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Motivation: Functions of 3D coordinates should 
rotate in line with the input

Input

𝒓 ∈ ℝ𝑛×3

Scalar 𝑓0 𝒓 = 𝑠
𝑠 ∈ ℝ

Vector
𝑓1 𝒓 = 𝒗

𝑣 ∈ ℝ3

Neural Network 𝑓(𝑟)Neural Network 𝑓(𝑟) Neural Network 𝑓(𝑟)Neural Network 𝑓(𝑟)

3D rotation

𝑅 ∈ ℝ3×3

𝑓0 𝒓𝑅 = 𝑠

𝑓1 𝒓𝑅 = 𝒗𝑅

Output

Benefits

Model is guaranteed to 

have correct symmetry

No need for data 

augmentation

Can generalize much 

better from little data
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Examples of equivariant functions

Equivariance: 𝑓 𝒓𝑅 = 𝐷𝑅𝑓(𝒓)

𝑓:ℝ𝑛×3 → ℝ𝑑

𝐷 ∈ ℝ𝑑×𝑑 orthogonal

representation matrix of rotation

Equivariant Not equivariant

𝑓 𝒓 =

𝑖

𝑟𝑖 𝑐𝑖

Linear combination of 

vector coordinates

𝑓 𝒓 = 𝜎 𝑟𝑥 𝜎 𝑟𝑦 𝜎 𝑟𝑧

General elementwise 

operations

Naïve MLP

𝑓 𝒂, 𝒃 =
𝑖
𝑎𝑖𝑏𝑖

𝑔 𝒂, 𝒃 = 𝑎𝑖𝑏𝑗ℎ 𝒂, 𝒃 = 𝒂 × 𝒃

Scalar product

Cross product Outer product

𝑓 𝒂, 𝒃 = 𝑐1𝒂 + 𝑐2𝒃

Linear combinations of 

vectors

ℎ 𝒂, 𝒃 = 𝜎(

𝑖

𝑎𝑖𝑏𝑖)

Function of a scalar, e.g.

𝑟𝑥

𝑟𝑦

𝑟𝑧
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Example of equivariant layer: Geometric vector perceptrons

Used operations

Linear combination of vectors

Scalar products / norms

Functions of scalars

A

B

C

A A

C C

C B

B

Uses only small subset of possible 

operations!

Jing et al., Learning from protein structure with geometric vector perceptrons ICLR 2021
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Full architecture: Message passing networks

Input

• 3D coordinates 𝒓𝒊 of 

each particle 𝑖

• Properties of each 

particles (e.g. color)

Compute input features of 

each particle

• Scalars 𝑠𝑖
(0)

, e.g. one-hot

encoding of color

• Vectors 𝒗𝒊
(0)

, e.g. directions 

to k nearest neighbors

Multiple update rounds

𝑠𝑖
(𝑡+1)

, 𝒗𝒊
(𝑡+1)

= 
𝑗 ∈

𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒔

𝐺𝑉𝑃𝜃(𝑠𝑖
𝑡
, 𝒗𝒊

𝑡
, 𝑠𝑗

𝑡
, 𝒗𝒋

(𝑡)
)

Read-out

𝑦𝑠𝑐𝑎𝑙𝑎𝑟 =

𝑖

𝑀𝐿𝑃𝜃(𝑠𝑖
(𝑇)
)

𝑠𝑖

𝒗𝒊

𝑠𝑖 ∈ ℝ# 𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑒𝑎𝑡.

𝒗𝒊 ∈ ℝ# 𝑣𝑒𝑐𝑡. 𝑓𝑒𝑎𝑡. × 3

𝑦𝑣𝑒𝑐𝑡𝑜𝑟 =

𝑖

𝒗𝒊
(𝑇)
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Representations of rotations

𝐷(𝑅): 𝑅 → ℝ𝑑×𝑑

Representation: Matrix corresponding to a rotation

𝐷 𝑅1 ∘ 𝑅2 = 𝐷 𝑅1 𝐷 𝑅2

Must form a group

𝐷 𝐼𝑑 = 𝐼 𝐷 −𝑅 = 𝐷(𝑅)−1 = 𝐷𝑇

Reducible: Can be decomposed into lower-dimensional representations

∃ projector 𝑃 ∈ ℝ𝑑×𝑠 𝑠 ≤ 𝑑: 𝑃𝑇𝐷𝑃 is a representation

Irreducible representations of O(3) rotations

𝑑 = 2𝑙 + 1, 𝑙 ∈ ℕ0
Fundamental objects have dimensionality 1, 3, 5, …

Typically indexed by 𝑙 ∈ ℕ0 and 𝑚 ∈ [−𝑙,… , 𝑙]
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Example: Outer product

𝑓 𝒂, 𝒃 = 𝑎𝑖𝑏𝑗 =

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

𝒍 = 𝟎, 1D scalar: Trace

𝑓0 𝒂, 𝒃 = 𝑡𝑟 𝑓 𝒂, 𝒃 =

𝑖

𝑎𝑖𝑏𝑗

𝑓1 𝒂, 𝒃 = 𝑓 𝒂, 𝒃 − 𝑓 𝒂, 𝒃 𝑻 = 𝒂 × 𝒃

𝒍 = 𝟏, 3D vector: Antisymmetric part

𝑓2 𝒂, 𝒃 = 𝑓 𝒂, 𝒃 + 𝑓 𝒂, 𝒃 𝑻

𝒍 = 𝟐, 5D object: Symmetric traceless part

General decomposition: 
Clebsch-Gordan

𝑦 = 𝑎 ⊗ 𝑏

𝑦𝐿𝑀 = 

𝑚1𝑚2

𝐶𝑙1𝑙2𝑚1𝑚2

𝐿𝑀 𝑎𝑙1𝑚1
𝑏𝑙2𝑚2

𝐶𝑙1𝑙2𝑚1𝑚2

𝐿𝑀 ≠ 0 for 𝑙1 − 𝑙2 ≤ 𝐿 ≤ |𝑙1 + 𝑙2|

1. Take tensorproduct of basic objects a,b

2. Decompose result again into basic objects

3. Truncate?

C is fixed and can be precomputed
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NequIP: General E(3) equivariant message passing network for
molecular properties

Input

• 3D coordinates 𝒓𝒊 of 

each particle 𝑖

• Particle type 𝑍𝑖

Each particle has a feature 

vector: 

𝒉𝑖, 𝑛𝑙𝑚

Multiple update rounds

𝒉𝑖, 𝑛𝑙𝑚
(𝑡+1)

=

𝑘

𝑊𝑛𝑘 

𝑚𝑓𝑚
′

𝐶𝑙𝑓𝑙′𝑚𝑓𝑚
′

𝑙𝑚 
𝑗 ∈

𝒏𝒆𝒊𝒈𝒉𝒃.

𝑓𝜃(𝒓𝑖𝑗)𝑘𝑙𝑓𝑚𝑓
⊗𝒉

𝑗, 𝑘𝑙′𝑚′
(𝑡)

𝑖 … index of particle

𝑛 … feature index (e.g. 1-64)

𝑙 … type of feature

(𝑙 = 0 scalar, 𝑙 = 1 vector, …)

𝑚… index within this feature

Convolution with trainable filters 𝑓𝜃

Reduction to

irreducible objects

Learnable

linear mixing

𝒉𝑖, 𝑛𝑙𝑚

Target: Energy 𝐸 of molecule

𝑬 =

𝒊

𝑓𝜃(𝒉𝑖,𝑙=0
(𝑇)

)

Batzner et al., E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials, Nature Comm. 2022
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Including higher-order rotaational features improves data
efficiency

Batzner et al., E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials, Nature Comm. 2022

Test error

# of training samples

10x 

reduction in 

test error
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NequIP outperformed all other existing surrogate models at the
time

Batzner et al., E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials, Nature Comm. 2022


