E(3)-Equivariant Neural Networks

Michael Scherbela Deep Learning Seminar Oct 5, 2022

Motivation: Functions of 3D coordinates should rotate in line with the input

Benefits

Model is guaranteed to have correct symmetry No need for data augmentation Can generalize much better from little data

Examples of equivariant functions

Equivariance: $f(\mathbf{r}R) = D_R f(\mathbf{r})$

 $f: \mathbb{R}^{n \times 3} \to \mathbb{R}^d$

 $D \in \mathbb{R}^{d \times d}$ orthogonal representation matrix of rotation

Equivariant

Linear combinations of vectors

Scalar product
$$f(a, b) = \sum_{i} a_{i}b_{i}$$

 $f(\boldsymbol{a},\boldsymbol{b}) = c_1 \boldsymbol{a} + c_2 \boldsymbol{b}$

Outer product

Cross product

 $h(a, b) = a \times b$

 $g(\boldsymbol{a}, \boldsymbol{b}) = a_i b_i$

Function of a scalar, e.g.

 $h(\boldsymbol{a},\boldsymbol{b})=\sigma(\sum a_i b_i)$

Not equivariant

Linear combination of vector coordinates

$$f(\boldsymbol{r}) = \sum_{i} r_i \, c_i$$

General elementwise operations

 $f(\mathbf{r}) = \begin{bmatrix} \sigma(r_x) & \sigma(r_y) & \sigma(r_z) \end{bmatrix}$

Example of equivariant layer: Geometric vector perceptrons

Used operations

Linear combination of vectors

B) Scalar products / norms

C Functions of scalars

Uses only small subset of possible operations!

Full architecture: Message passing networks

Input

- 3D coordinates r_i of each particle i
- Properties of each particles (e.g. color)

Compute input features of each particle

- Scalars $s_i^{(0)}$, e.g. one-hot encoding of color
- Vectors $v_i^{(0)}$, e.g. directions to k nearest neighbors

Multiple update roundsRead-out
$$s_i^{(t+1)}, v_i^{(t+1)} = \sum_{\substack{j \in \\ neighbors}} GVP_{\theta}(s_i^{(t)}, v_i^{(t)}, s_j^{(t)}, v_j^{(t)})$$
 $y_{scalar} = \sum_i MLP_{\theta}(s_i^{(T)})$ $v_{scalar} = \sum_i v_i^{(T)}$ $v_{vector} = \sum_i v_i^{(T)}$

Representations of rotations

Representation: Matrix corresponding to a rotation

 $D(R): R \to \mathbb{R}^{d \times d}$

Must form a group $D(R_1 \circ R_2) = D(R_1)D(R_2)$ D(Id) = I $D(-R) = D(R)^{-1} = D^T$

Reducible: Can be decomposed into lower-dimensional representations $\exists \text{ projector } P \in \mathbb{R}^{d \times s} \ s \leq d$: $P^T D P$ is a representation

Irreducible representations of O(3) rotations $d = 2l + 1, l \in \mathbb{N}_0$

Fundamental objects have dimensionality 1, 3, 5, ... Typically indexed by $l \in \mathbb{N}_0$ and $m \in [-l, ..., l]$

Example: Outer product

$$f(\boldsymbol{a}, \boldsymbol{b}) = a_i b_j = \begin{bmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \\ a_2 b_1 & a_2 b_2 & a_2 b_3 \\ a_3 b_1 & a_3 b_2 & a_3 b_3 \end{bmatrix}$$

l = 0, 1D scalar: Trace $f_0(a, b) = tr(f(a, b)) = \sum_i a_i b_j$

l = 1, 3D vector: Antisymmetric part $f_1(a, b) = f(a, b) - f(a, b)^T = a \times b$

l = 2, 5D object: Symmetric traceless part $f_2(a, b) = f(a, b) + f(a, b)^T$

General decomposition: Clebsch-Gordan

 $y = a \otimes b$

$$y_{LM} = \sum_{m_1m_2} C_{l_1l_2m_1m_2}^{LM} a_{l_1m_1} b_{l_2m_2}$$

$$C_{l_1 l_2 m_1 m_2}^{LM} \neq 0$$
 for $|l_1 - l_2| \le L \le |l_1 + l_2|$

C is fixed and can be precomputed

- 1. Take tensorproduct of basic objects a,b
- 2. Decompose result again into basic objects
- 3. Truncate?

NequIP: General E(3) equivariant message passing network for molecular properties

Multiple update rounds Input 3D coordinates r_i of $\boldsymbol{h}_{i,nlm}^{(t+1)} = \sum_{k} W_{nk} \sum_{m_f m'} C_{l_f l' m_f m'}^{lm} \sum_{j \in \mathcal{I}} f_{\theta}(\boldsymbol{r}_{ij})_{kl_f m_f} \otimes \boldsymbol{h}_{j,kl'm'}^{(t)}$ each particle *i* Particle type Z_i ٠ **Target:** Energy *E* of molecule neighb. Each particle has a feature Learnable vector: linear mixing Convolution with trainable filters f_{θ} $\boldsymbol{h}_{i nlm}$ Reduction to *i* ... index of particle irreducible objects $n \dots$ feature index (e.g. 1-64) *l* ... type of feature (l = 0 scalar, l = 1 vector, ...) m_{\dots} index within this feature $\boldsymbol{E} = \sum_{i=1}^{n} f_{\theta}(\boldsymbol{h}_{i,l=0}^{(T)})$ $\boldsymbol{h}_{i,nlm}$

Including higher-order rotaational features improves data efficiency

NequIP outperformed all other existing surrogate models at the time

Table 1 Energy and Force MAE for molecules on the original MD-17 data set, reported in units of [meV] and [meV/Å], respectively, and a training budget of 1000 reference configurations.

Molecule		SchNet	DimeNet	sGDML	PaiNN	SpookyNet	GemNet-(T/Q)	NewtonNet	UNITE	NequIP (I = 3)
Aspirin	Energy	16.0	8.8	8.2	6.9	6.5	-	7.3	-	5.7
	Forces	58.5	21.6	29.5	14.7	11.2	9.4	15.1	6.8	8.0
Ethanol	Energy	3.5	2.8	3.0	2.7	2.3	-	2.6	-	2.2
	Forces	16.9	10.0	14.3	9.7	4.1	3.7	9.1	4.0	3.1
Malonaldehyde	Energy	5.6	4.5	4.3	3.9	3.4	-	4.2	-	3.3
	Forces	28.6	16.6	17.8	13.8	7.2	6.7	14.0	6.9	5.6
Naphthalene	Energy	6.9	5.3	5.2	5.0	5.0	-	5.1	-	4.9
	Forces	25.2	9.3	4.8	3.3	3.9	2.2	3.6	2.8	1.7
Salicylic acid	Energy	8.7	5.8	5.2	4.9	4.9	-	5.0	-	4.6
	Forces	36.9	16.2	12.1	8.5	7.8	5.4	8.5	4.2	3.9
Toluene	Energy	5.2	4.4	4.3	4.1	4.1	-	4.1	-	4.0
	Forces	24.7	9.4	6.1	4.1	3.8	2.6	3.8	3.1	2.0
Uracil	Energy	6.1	5.0	4.8	4.5	4.6	-	4.6	-	4.5
	Forces	24.3	13.1	10.4	6.0	5.2	4.2	6.5	4.2	3.3

For GemNet, the best result out of the T/Q versions is presented and for PaiNN the best between force-only and joint force and energy training. For UNITE, we compare to the "direct-learning" results reported in²⁶.

Best results are marked in bold.