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Motivation: Functions of 3D coordinates should
rotate in line with the input

Input ° >
‘ 3D rotation
R € RSXS
L
Sceal]]aRr fo(r) =s fo(rR) =s
S

Vector _ O _ :
e R A =7 AR =TR QRO

Benefits

Model is guaranteed to
have correct symmetry

No need for data
augmentation

Can generalize much
better from little data




Examples of equivariant functions

f: RnXS N Rd

Equivariance: f(rR) = Drf(r) D € R%*? orthogonal
representation matrix of rotation

Equivariant Not equivariant
vectors f(ab) = Z a;b; vector coordinates

f(a, b) = Cla + Czb

fr) = z 1i Ci Tx \
Cross product Outer product L

h(a, b) =aXbh g(a, b) = aibj
General elementwise 7,
operations

f(r) = [O_(rx) O-(Ty) O-(rz)]

Function of a scalar, e.qg.

h(a,b) = o) aiby)




Example of equivariant layer: Geometric vector perceptrons

Geometric Vector Perceptron
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scalar channel

Used operations
Q Linear combination of vectors
@ Scalar products / norms

(® Functions of scalars

Uses only small subset of possible

operations!

Jing et al., Learning from protein structure with geometric vector perceptrons ICLR 2021



Full architecture: Message passing networks

Input Multiple update rounds Read-out

« 3D coordinates r; of
each particle i

*  Properties of each Sl-(t“),vg”l) = Z GV Py (si(t),vgt), sj(t),v]@t)) Vecalar = z MLP, (si(T))
particles (e.g. color) G -
neighbors

Compute input features of
each particle »
- Scalars sl.(o), e.g. one-hot
encoding of color
« Vectorsv

EO), e.g. directions
to k nearest neighbors

O s; € R scalar feat.

| T
Yvector = z vg )
i

i v; € ]R# vect. feat. X 3




Representations of rotations

Representation: Matrix corresponding to a rotation

D(R):R — R4*d

Must form a group
D(R; ° R;) = D(R{)D(R;) D(d) =1 D(—R) =D(R)~'=D"

Reducible: Can be decomposed into lower-dimensional representations
3 projector P € R**S s < d: PTDP is arepresentation

Irreducible representations of O(3) rotations

d=2l+11¢€ No Fundamental objects have dimensionality 1, 3, 5, ...
’ Typically indexed by I € Ny and m € [, ..., []




General decomposition:
Example: Outer product Clebsch-Gordan

a;b; a;b, a;bs _
=a®b
f(a,b) = a;b; = |ayb; ayb, a,b; Y
asb; azb, asbs
yLM = z Cllil\l/lzmlmz allml blzmz

‘ mim,

Il = 0, 1D scalar: Trace ClLll\l/IZmlmz =0for|ly —L|<L<|L+L]

fo(a,b) = tr(f(a,b)) = Z a:b,

C is fixed and can be precomputed

[ = 1, 3D vector: Antisymmetric part

fi(a,b) = f(a,b) — f(a,b) =axb
1. Take tensorproduct of basic objects a,b

2. Decompose result again into basic objects

[ = 2,5D object: Symmetric traceless part

fZ(ai b) = f(a, b) +f(a, b)T

3. Truncate?




NequlP: General E(3) equivariant message passing network for
molecular properties

Input Multiple update rounds

« 3D coordinates r; of
each particle i

(t+1) Im (t)
« Particle type Z; l nlm 2 Wnk z lel mfm z fg (rij)klfmf ® h] kl'm’

mgm’ JE
Target: Energy E of molecule T neighb.
\
Each particle has a feature Learnable |
vector: linear mixing Convolution with trainable filters f
hi, nlm Reduction to
i ... index of particle » irreducible objects
n ... feature index (e.g. 1-64)
[ ... type of feature ‘
(Il = 0 scalar, L =1 vector, ...)

m... index within this feature

E = Zfe (n7Lo)

Batzner et al., E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials, Nature Comm. 2022



Including higher-order rotaational features improves data
efficiency

Test error
10—1_
6x 1072
B 10x
reduction in

4 x 1072 test error
—— L=0, slope=-0.106

3 X :I,[',]'2 - —— L=1, slope=-0.24
—— L=2, slope=-0.244 v
—— L=3, slope=-0.258

101 102 10°
# of training samples

Batzner et al., E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials, Nature Comm. 2022



NequlP outperformed all other existing surrogate models at the

time
Table 1 Energy and Force MAE for molecules on the original MD-17 data set, reported in units of [meV] and [meV/A],
respectively, and a training budget of 1000 reference configurations.
Molecule SchNet DimeNet sGDML PaiNN SpookyNet GemNet-(T/Q) NewtonNet UNITE NequlP (I=3)
Aspirin Energy 16.0 8.8 8.2 6.9 6.5 - 7.3 - 5.7
Forces 585 21.6 29.5 14.7 1.2 9.4 15.1 6.8 8.0
Ethanol Energy 3.5 2.8 3.0 2.7 2.3 - 2.6 - 2.2
Forces 16.9 10.0 14.3 9.7 4.1 3.7 9.1 4.0 3.1
Malonaldehyde  Energy 5.6 4.5 4.3 3.9 3.4 - 4.2 - 3.3
Forces 28.6 16.6 17.8 13.8 7.2 6.7 14.0 6.9 5.6
Naphthalene Energy 6.9 5.3 52 5.0 5.0 - 5. - 4.9
Forces 25.2 9.3 4.8 3.3 3.9 2.2 3.6 2.8 1.7
Salicylic acid Energy 8.7 5.8 52 49 4.9 - 5.0 - 4.6
Forces 36.9 16.2 12.1 8.5 7.8 5.4 8.5 4.2 3.9
Toluene Energy 5.2 4.4 4.3 4.1 4.1 - 4.1 - 4.0
Forces 24.7 9.4 6.1 41 3.8 2.6 3.8 3.1 2.0
Uracil Energy 6.1 5.0 4.8 4.5 4.6 - 4.6 - 4.5
Forces 243 13.1 10.4 6.0 5.2 4.2 6.5 4.2 33
For GemMNet, the best result out of the T/Q versions is presented and for PaiNN the best between force-only and joint force and energy training. For UNITE, we compare to the “direct-learning” results
reported in2,
Best results are marked in bold.

Batzner et al., E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials, Nature Comm. 2022
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