Compute-optimal large
language models
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1) Find large language model
scalling law

Compute-cost to traina LLM
depends on 2 key choices:

« Model-size: Nr of trainable
parameters

« Data-size: Nr of tokens processed
during training

To train a larger LLM:
6 How much should we increase

model-size vs data-size?

2) Train compute-optimal
language model ,,Chinchilla“
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4x smaller model beats GPT3 and

Gopher on all benchmarks




Some background on typical LLM (pre-)training

Single epoch:
Each training sample is only used once

Training-loss is unbiased estimator of test-
loss

Training-loss is a good proxy for downstream
performance

Fixed training length: Nr of training steps
fixed in advance, due to cosine-LR-schedul

Compute scales linearly with parameters:
Parameters and compute dominated by K/Q/V-
matmuls in attention layers
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Methodology: Train a lot of models and find optimal model size as a
function of compute-budget
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Current LLMs are too big and under-trained, because they followed
a wrong scaling law (Kaplan et al 2020)
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—— Approach 1
—— Approach 2
—— Approach 3
--- Kaplan et al (2020)

Model Owner Params Tokens MLLU
(bn) (bn) Score
GPT-3 OpenAl 175 300 44%
NVIDIA 530 270
DeepMind 280 300 60%
DeepMind 70 1400 68%




PaLLM could be substantially better, if it had been smaller and
trained on more data
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Scaling to trillions of
parameters?

Max Welling
@wellingmax

In my 2018 keynote at ICML
| showed this curve and
predicted that in 2025 we
would have models with
100 trillion parameters. We
might get there sooner...

Required resources for compute-optimal LLM

Params (bn) FLOPSs vs. Tokens (trillions)
Gopher

70 1X 1.4

175 7X 4

520 59x 11

1,000 221X 21

10,000 22,515x 216

100,000 225,159x 2162




How much text is

there actually?

Order-of-magnitude Breakdown by source
estimations: tokens (in bn)

News (en)

Books

2 tn

tokens in MassiveText

Massiveweb (en)

Github

Conversations (multiling)
Forums

3.2 1n

tokens in high-quality data c4

Filtered web (multiling)

Wikipedia (muttiling) [
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Source: https://www.alignmentforum.org/posts/6Fpvch8RR29gLEWNH/chinchilla-s-wild-implications
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