Compute-optimal large
language models

DeepMind 2022, https://arxiv.org/abs/2203.15556

summarized by Michael Scherbela
Deep Learning Seminar
Jan 18, 2023

020 o ° ° o e
S 3
&y AR e )
&/ DN
= =\
| 2
= =
Ly wilen
ULLD—~=/ %
Irqnis~




1) Find large language model
scalling law

Compute-cost to traina LLM
depends on 2 key choices:

« Model-size: Nr of trainable
parameters

« Data-size: Nr of tokens processed
during training

To train a larger LLM:
6 How much should we increase

model-size vs data-size?

2) Train compute-optimal
language model ,,Chinchilla“

o
=
o

o
o
o0

Decrease in bpb
o
o
=

compared to Gopher
o
(]
[e2]

o
o
N

0.00

pubmed_abstracts

3
S

w0 1

_exporter
pile_cc
hackernews
arxiv
freelaw
book
philpape

nih_ex
bookcorpus2

pubmed_central
stackexchange
opensubtitles
openwebtext2

dm_mathematics

]
h=]
c
3
o
—
o
~
o
©
o
=]
s
o
n
=]

b

>

gith

C

—

ubuntu i

rl
9

(1] —

europ

gutenberg pg_

4x smaller model beats GPT3 and

Gopher on all benchmarks




Some background on typical LLM (pre-)training

Single epoch:
Each training sample is only used once

Training-loss is unbiased estimator of test-
loss

Training-loss is a good proxy for downstream
performance

Fixed training length: Nr of training steps
fixed in advance, due to cosine-LR-schedul

Compute scales linearly with parameters:
Parameters and compute dominated by K/Q/V-
matmuls in attention layers

10%7

1018

1019

1020
FLOPS

1021

1022




Methodology: Train a lot of models and find optimal model size as a
function of compute-budget

3.2 . .
1T Optimal scaling:
0.50
- Nparams % FLOPs
| / 100B 435 Ntokens & FLOPs®->°
52.8 6e18 W -
1 111 Q
o leld -\.‘./ © 108 B
E 2.6 —&— 3el9 \:: 7 E /6,
@ —8— 6el9 y \w = .’0
= >4 —8— 1le20 | o 1B ’.f,
7 —e— 3e20 o . ®
—e— 620 N 5—.—0" e
2.2 _¢- 1e21 T 100M
—o— 3e2l
2.0
100M 300M 1B 3B 6B 308B 10%7 10*° 104! 10723 10%°

Parameters FLOPs




Current LLMs are too big and under-trained, because they followed
a wrong scaling law (Kaplan et al 2020)

Parameters

100B

100M

1T

10B

1.0B

1023

/!

e

7/

s

1025

—— Approach 1
—— Approach 2
—— Approach 3
--- Kaplan et al (2020)

Model Owner Params Tokens MLLU
(bn) (bn) Score
GPT-3 OpenAl 175 300 44%
NVIDIA 530 270
DeepMind 280 300 60%
DeepMind 70 1400 68%




PaLLM could be substantially better, if it had been smaller and
trained on more data

e
2050 { O
215
2025 4
gpt3 L 210
2.000 - O gopher . nlg
O o
L 205
1975 -
a
- L 200
1950 -
chinchilla
o L 195
palm
1925 - ®
190
1900 4
'5al . 185
1875 - '“-Opr

05 10 15 20 25 3.0
compute (flops) 1e24




Scaling to trillions of
parameters?

Max Welling
@wellingmax

In my 2018 keynote at ICML
| showed this curve and
predicted that in 2025 we
would have models with
100 trillion parameters. We
might get there sooner...

Required resources for compute-optimal LLM

Params (bn) FLOPSs vs. Tokens (trillions)
Gopher

70 1X 1.4

175 7X 4

520 59x 11

1,000 221X 21

10,000 22,515x 216

100,000 225,159x 2162




How much text is

there actually?

Order-of-magnitude Breakdown by source
estimations: tokens (in bn)

News (en)

Books

2 tn

tokens in MassiveText

Massiveweb (en)

Github

Conversations (multiling)
Forums

3.2 1n

tokens in high-quality data c4

Filtered web (multiling)

Wikipedia (muttiling) [

(@]

200 400 600 800

Source: https://www.alignmentforum.org/posts/6Fpvch8RR29gLEWNH/chinchilla-s-wild-implications



	Default Section
	Slide 1: Compute-optimal large language models

	Untitled Section
	Slide 2: 1) Find large language model scalling law 
	Slide 3: Some background on typical LLM (pre-)training
	Slide 4: Methodology: Train a lot of models and find optimal model size as a function of compute-budget
	Slide 5: Current LLMs are too big and under-trained, because they followed a wrong scaling law (Kaplan et al 2020)
	Slide 6: PaLM could be substantially better, if it had been smaller and trained on more data
	Slide 7: Scaling to trillions of parameters?
	Slide 8: How much text is there actually?


