ALPHAZERO

Timo Klein | 01.03.2023
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MODEL-BASED REINFORCEMENT LEARNING

e Last time: Model-free RL
P Learning purely from trial and error

e This time: Model-based RL
» We know how the environment works
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MODEL-BASED REINFORCEMENT LEARNING

e Last time: Model-free RL
P Learning purely from trial and error

e This time: Model-based RL
» We know how the environment works

e Given an MDP M'=(S, A, P, R, y)
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MONTE CARLO TREE SEARCH

e Decision-time planning algorithm

e Uses heuristic search to build an asymmetric search tree
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MONTE CARLO TREE SEARCH (MCTS)

e Decision-time planning algorithm
e Uses heuristic search to build an asymmetric search tree

* Nice properties
Anytime (Can always stop and get something)
Best-first (Selects the best known action)
Human-like planning (Gets better with more thinking)
Diminishing returns (Already pretty good with few iterations)
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MCTS: PHASES

Selection Expansion Simulation Backup

Tltree Tlsimulation
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MCTS: PRELIMINARIES

e Nodes: States

e Edges: State-action pairs

01/03/2023 AlphaZero

Page 8



g% Lniversitat
ey wWilen

MCTS: PRELIMINARIES

e Nodes: States
e Edges: State-action pairs

* Sy: Root node (actual current environment state)
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MCTS: PRELIMINARIES

e Nodes: States
e Edges: State-action pairs
e So: Root node (actual current environment state)

e Each edge stores |
N (s, a): Visitation count
W(s, a): Total action value
Q(s,a): Mean action value
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MCTS: SELECTION

e At each node, select actions according to

_ V2 N (s, b)
UCT(s,a) = Q(s,a) + e 0m s
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MCTS: SELECTION

e At each node, select actions according to

V2 N(s,b)
1+ N(s,a)

UCT(s,a) =Q(s,a) +c

Upper confidence bound
based on Hoeffding’s
inequality
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MCTS: SELECTION EXAMPLE

N(sg, 1) 2
N(sg,7) 1
W (so, ) 0
W (sg,1) -1
Q(so, 1) 1(0)

Q(Soﬂ”) 0 (_1)
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MCTS: SELECTION EXAMPLE

Susic e

N(sg, 1) 2

N(sg, 1) 1

W (so, 1) 0

W (sg,1) -1

Q(so, D 1

Q(so, 1) 0
UCT (sg, 1) 3

1+ 3 ~ 1.577

UCT (sg, 1)

3
0 +7 ~ (0.866
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MCTS: EXPANSION EXAMPLE

e Action r has not been taken in s4
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MCTS: EXPANSION EXAMPLE

e Action r has not been taken in s4
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MCTS: SIMULATION EXAMPLE

e Run simulation from s3 until a terminal state is reached

e Cheapest possible way: Uniform random selection
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MCTS: BACKUP EXAMPLE

N(sg, 1) 2+1

N(sg,7) 1

W (s, 1) 0+1

W (sg,1) -1

Q(so, 1) 1
(3

Q(so, 1) 0(—1)
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MCTS: BACKUP EXAMPLE

N(sg, 1) 2+1

N(sg,7) 1

W (s, 1) 0+1

W (sg,1) -1

Q(so, 1) 1
16

Q(so, 1) 0(—1)

Action selection: Use action
with most visits

01/03/2023 AlphaZero
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ALPHAZERO MOTIVATION

e Why doesn’t MCTS work for Go?
» Branching factor too large (Chess 35, Go 250)

e High-quality simulations are too costly
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ALPHAZERO MOTIVATION

e Why doesn’t MCTS work for Go?
» Branching factor too large (Chess 35, Go 250)

e High-quality simulations are too costly

e How can the tree search be made more efficient?

e Solution: Incorporate “prior” knowledge about move quality with NN
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ALPHAZERO: INTEGRATING NEURAL NETWORKS

Selection Expansion ! Evaluation | Backup
To
Tltree fo(s) = (ﬂa g, V)
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ALPHAZERO: SELF-PLAY

a Self-play g s
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ALPHAZERO: NETWORK ARCHITECTURE

Trunk: ResNet with 20 blocks

7T

01/03/2023 AlphaZero
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ALPHAZERO: NETWORK ARCHITECTURE

Trunk: ResNet with 20 blocks

Policy head: Outputs distribution over moves
Value head: Outputs probability of victory

01/03/2023 AlphaZero
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ALPHAZERO: SHARED NETWORK IMPROVEMENT

a b c
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ALPHAZERO: SELECTION

e At each node, select actions according to
\/Zb N(S, b)
1+ N(s,a)

UCT(s,a) =Q(s,a) +c
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ALPHAZERO: SELECTION

e At each node, select actions according to

J2p N(s, b)

UCT(s,a) = Q(s,a) +c 1+ N(s,a)

Move probability from the
network’s policy head for
edge (s, a)

01/03/2023 AlphaZero
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ALPHAZERO: EVALUATION/SIMULATION
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ALPHAZERO: EVALUATION/SIMULATION

Neural network adds
* Probability distribution over moves
*  Win probability (= Value estimate)
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ALPHAZERO: PLAYED ACTION (DATA GENERATION)

Sample actual game action from
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ALPHAZERO TRAINING

e Network outputs

(p, U) = f9
p: Move distribution
v: Win probability
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ALPHAZERO TRAINING

e Network outputs
(p, U) = f9
p: Move probabilities
v: Win probability

 Training data
(S¢, T, Zt)
St: Actual game state
1T.: MCTS selection probabilities
Z.: Game outcome from view of current player
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ALPHAZERO TRAINING

e Loss function

|l = (z —v)?

+cll6]|”

e Network outputs
(p, U) = f9
p: Move probabilities
v: Win probability

 Training data
(S¢, T, Zt)
S¢: Game state
1T.: MCTS selection probabilities
Z.: Game outcome from view of current player
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ALPHAZERO TRAINING

e Loss function e Network outputs
2 _
| = (z —v)* +cl||6]| (p,v) = fo
p: Move probabilities
e MSE between value prediction and winner v: Win probability

 Training data
(S¢) ¢, Z¢)
e Weight decay S¢: Game state
1T.: MCTS selection probabilities
Z.: Game outcome from view of current player
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WHY DOES THIS WORK?
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WHY DOES THIS WORK?

e At the start, policy outputs p; will be complete garbage
e BUT: MCTS outputs mr; will be a little better

e Starts a Self-Improving Loop
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WHY DOES THIS WORK?

e At the start, policy outputs p; will be complete garbage

e BUT: MCTS outputs mr; will be a little better

e Starts a Self-Improving Loop

1. Policy generates outputs

2. These are improved by MCTS

3. Policy is trained to match improved action probabilities
4

Repeat until superhuman

01/03/2023 AlphaZero Page 38



ENGINEERING & TRICKS

e Asynchronous data collection and training
e 5000 TPUs for data collection

e 4 days of training (for Go)

e Distributed network training

e MICTS parallelization with Virtual Loss

e Additional action noise at match start to avoid degeneration
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LIMITATIONS OF ALPHAZERO

e Requires a given model of the environment

e Works only for discrete action spaces

e Environment must be fully observable

e Chess, Go etc. are deterministic environments
e Self-play works for zero-sum games only

e Crazy compute requirements for training

» Addressed by follow-up work
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ALPHAZERO VS ALPHAGO

e AlphaGo uses separate policy and value networks
e AlphaGo pre-trains policy and value nets on human data
e AlphaGo still uses simulations with a simulation network

e AlphaGo uses many Go-specific heuristics
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ALPHAZERO VS ALPHAGO ZERO

e AlphaGo Zero uses Go-specific data augmentations
e AlphaGo Zero uses more rollouts (1600 vs 800)

e AlphaGo Zero uses tournament selection to select network
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ALPHAGO VS ALPHAGO ZERO VS ALPHAZERO
Go —

Less human “expert "knowledge
P Better algorithm ©

—— AlphaZero
—— AlphaGo Zero
—— AlphaGo Lee

0 100 200 300 400 500 600 700
Thousands of Steps
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ALPHAZERO VS MUZERO

e h: Encoder
e g: Dynamics function
e f: Prediction function

e Training
Functions are jointly trained to
predict K steps from real
trajectory
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e Social Artificial Intelligence Night
© 24.03.2023 | 16:30 | FH St. Polten
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©24.03.2023 | 16:30 | FH St. Polten

Social Artificial
Intelligence Night
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HOEFFDING’S INEQUALITY

Theorem (Hoeffding's Inequality)

Let X, ..., Xt be i.i.d. random variables in [0,1], and let
Xe=2>""_, X: be the sample mean. Then

P[E[X] > X;+u] < e 2
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O 102 Simulations
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ALPHAZERO CHESS EXAMPLE
6o ¢
e Shows 10 most visited states Y] ds 05 qé
e Estimated value from white’s perspective, A
scaled by factor of 100 (?
e Thickness of node border represents visit counts
0 6
1 @,
e
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