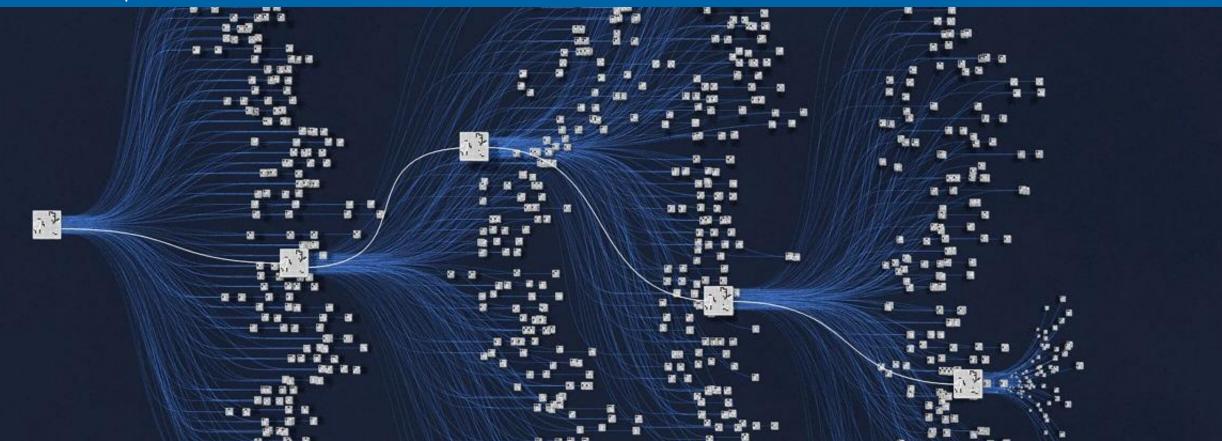


ALPHAZERO

Timo Klein | 01.03.2023



MODEL-BASED REINFORCEMENT LEARNING

- Last time: *Model-free* RL
 - ► Learning purely from trial and error
- This time: Model-based RL
 - ► We know how the environment works

MODEL-BASED REINFORCEMENT LEARNING

- Last time: *Model-free* RL
 - ► Learning purely from trial and error
- This time: *Model-based* RL
 - ► We know how the environment works
- Given an MDP $\mathcal{M}=\langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$

MODEL-BASED REINFORCEMENT LEARNING

- Last time: Model-free RL
 - ► Learning purely from trial and error
- This time: Model-based RL
 - ► We know how the environment works
- Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle$

Dynamics are known!

MONTE CARLO TREE SEARCH

- Decision-time *planning* algorithm
- Uses heuristic search to build an *asymmetric* search tree

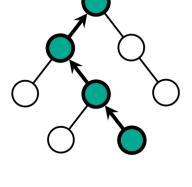
MONTE CARLO TREE SEARCH (MCTS)

- Decision-time *planning* algorithm
- Uses heuristic search to build an *asymmetric* search tree

• Nice properties

Anytime (Can always stop and get something)
Best-first (Selects the best known action)
Human-like planning (Gets better with more thinking)
Diminishing returns (Already pretty good with few iterations)

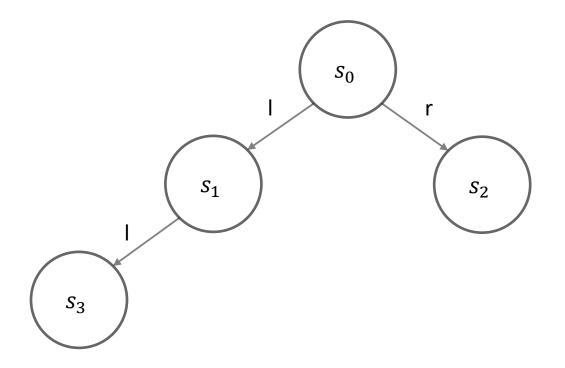
MCTS: PHASES Selection Expansion Simulation $\pi_{ ext{simulation}}$ π_{tree}



Backup

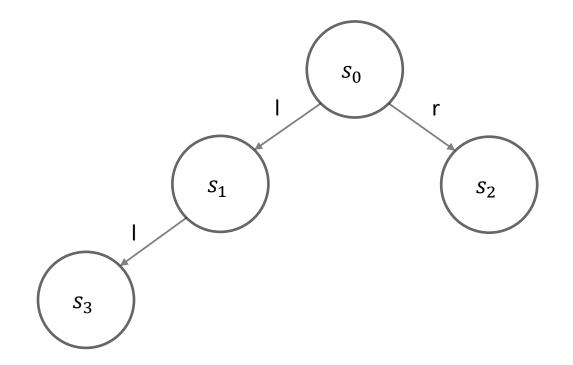
MCTS: PRELIMINARIES

- Nodes: States
- Edges: State-action pairs



MCTS: PRELIMINARIES

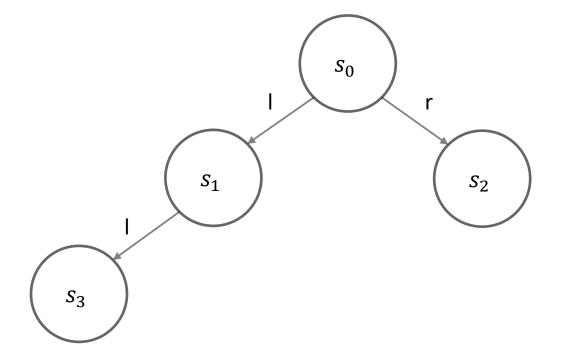
- Nodes: States
- Edges: State-action pairs
- *s*₀: Root node (actual current environment state)



MCTS: PRELIMINARIES

- Nodes: States
- Edges: State-action pairs
- *s*₀: Root node (actual current environment state)
- Each edge stores

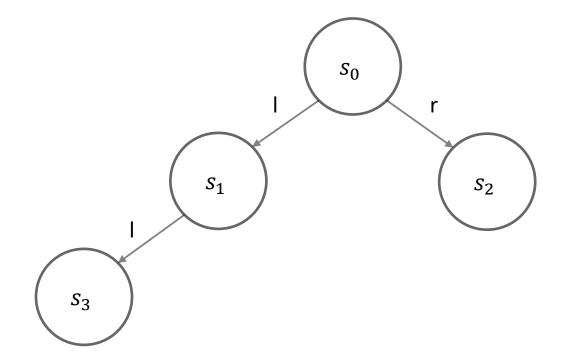
 N(s, a): Visitation count
 W(s, a): Total action value
 Q(s, a): Mean action value



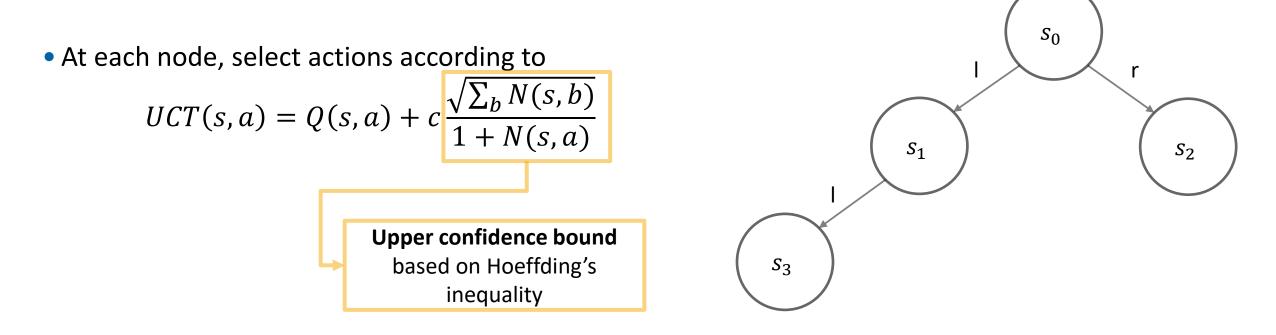
MCTS: SELECTION

• At each node, select actions according to $\sqrt{\sum_{k} N(s, b)}$

$$UCT(s,a) = Q(s,a) + c \frac{\sqrt{2b} N(s,b)}{1 + N(s,a)}$$

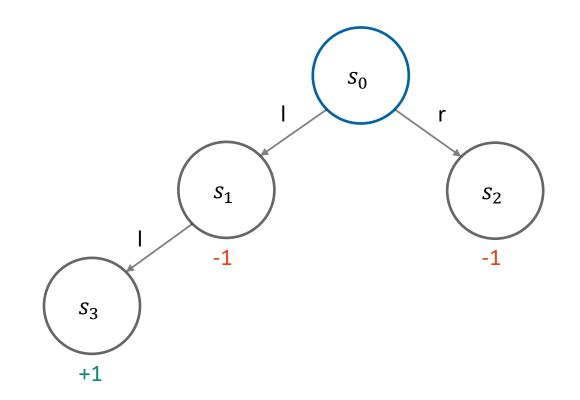


MCTS: SELECTION



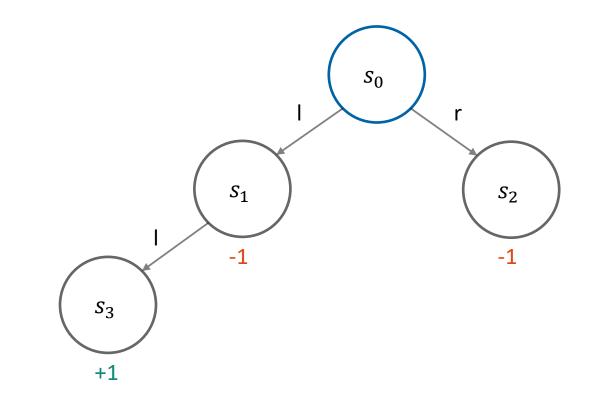
MCTS: SELECTION EXAMPLE

Statistic	Value
$N(s_0, l)$	2
$N(s_0,r)$	1
$W(s_0, l)$	0
$W(s_0,r)$	-1
$Q(s_0, l)$	1 (0)
$Q(s_0,r)$	0 (-1)



MCTS: SELECTION EXAMPLE

Statistic	Value
$N(s_0, l)$	2
$N(s_0,r)$	1
$W(s_0, l)$	0
$W(s_0,r)$	-1
$Q(s_0, l)$	1
$Q(s_0,r)$	0
$UCT(s_0, l)$	$1 + \frac{\sqrt{3}}{3} \approx 1.577$
$UCT(s_0, r)$	$0 + \frac{\sqrt{3}}{2} \approx 0.866$



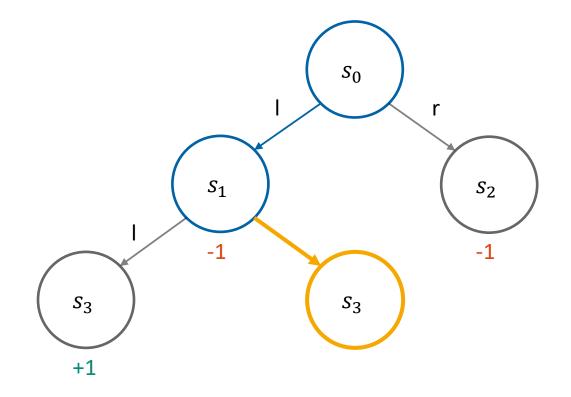
MCTS: EXPANSION EXAMPLE

• Action r has not been taken in s_1



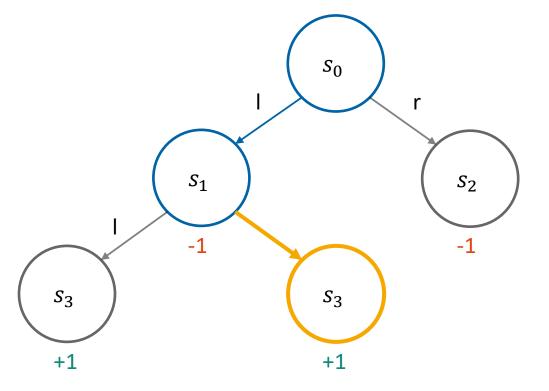
MCTS: EXPANSION EXAMPLE

• Action r has not been taken in $s_1 \ge Expand$ it!



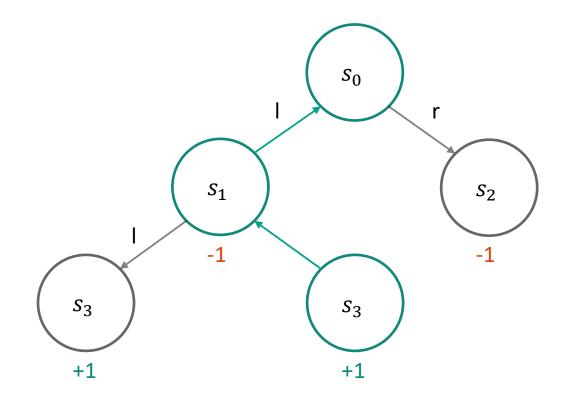
MCTS: SIMULATION EXAMPLE

- Run simulation from s_3 until a terminal state is reached
- Cheapest possible way: Uniform random selection



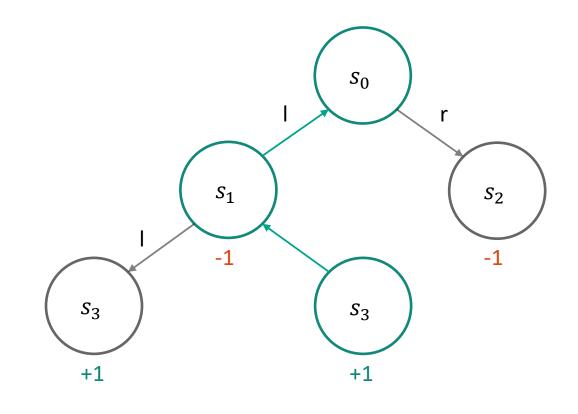
MCTS: BACKUP EXAMPLE

Statistic	Value
$N(s_0, l)$	2 + 1
$N(s_0,r)$	1
$W(s_0, l)$	0 + 1
$W(s_0,r)$	-1
$Q(s_0, l)$	$1\left(\frac{1}{3}\right)$
$Q(s_0,r)$	0 (-1)



MCTS: BACKUP EXAMPLE

Statistic	Value	
$N(s_0, l)$	2+1	
$N(s_0,r)$	1	
$W(s_0, l)$	0 + 1	
$W(s_0,r)$	-1	
$Q(s_0, l)$	$1\left(\frac{1}{3}\right)$	
$Q(s_0, r)$	0 (-1)	
Action selection : Use action with most visits		



ALPHAZERO MOTIVATION

- Why doesn't MCTS work for Go?
 - ► Branching factor too large (Chess 35, Go 250)
- High-quality simulations are too costly

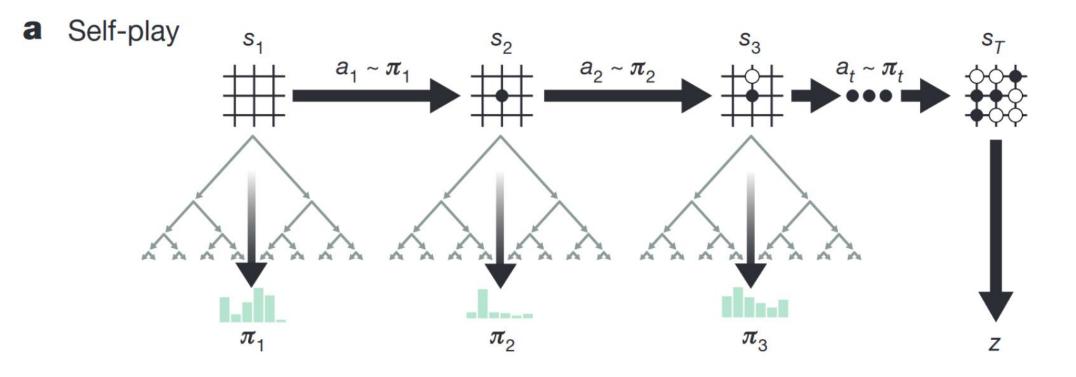
ALPHAZERO MOTIVATION

- Why doesn't MCTS work for Go?
 - ► Branching factor too large (Chess 35, Go 250)
- High-quality simulations are too costly
- How can the tree search be made more efficient?
- Solution: Incorporate "prior" knowledge about move quality with NN

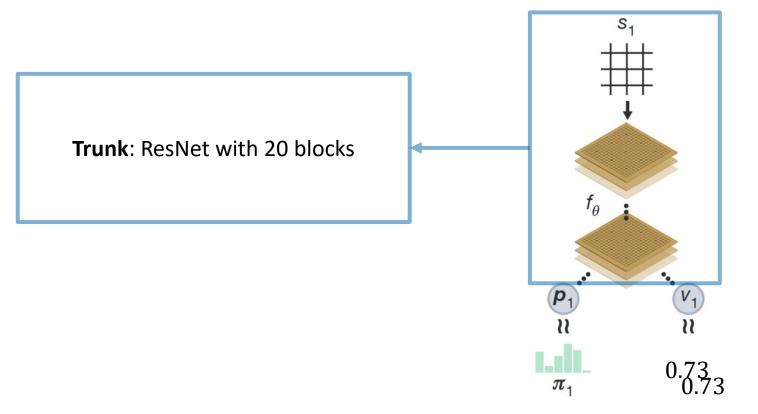
ALPHAZERO: INTEGRATING NEURAL NETWORKS



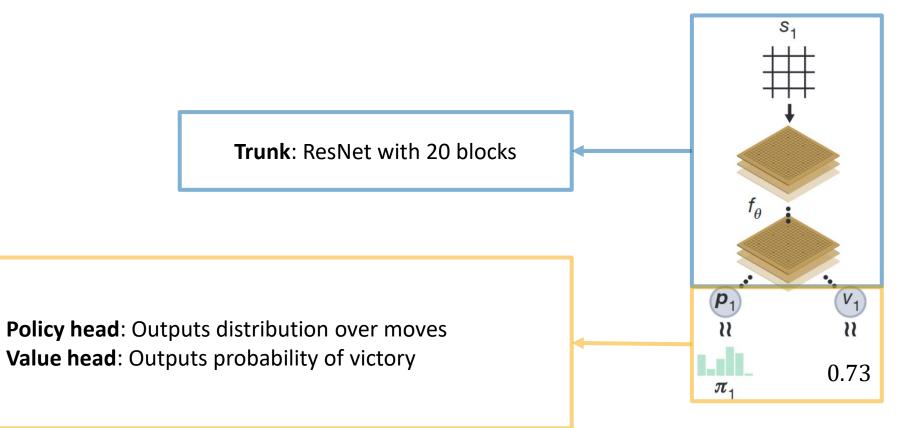
ALPHAZERO: SELF-PLAY



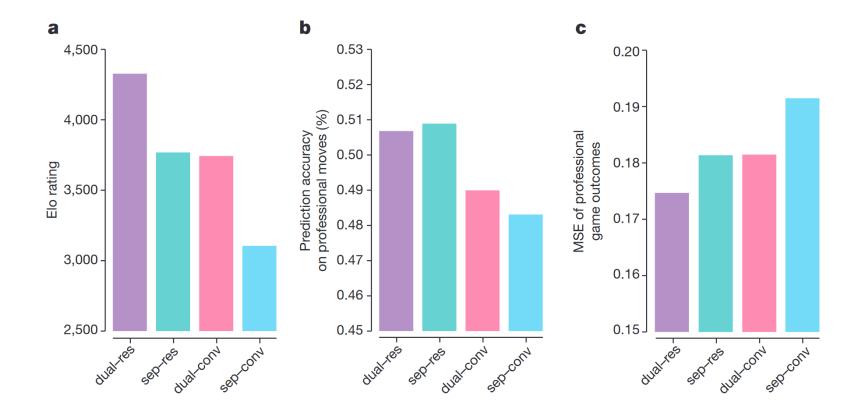
ALPHAZERO: NETWORK ARCHITECTURE



ALPHAZERO: NETWORK ARCHITECTURE



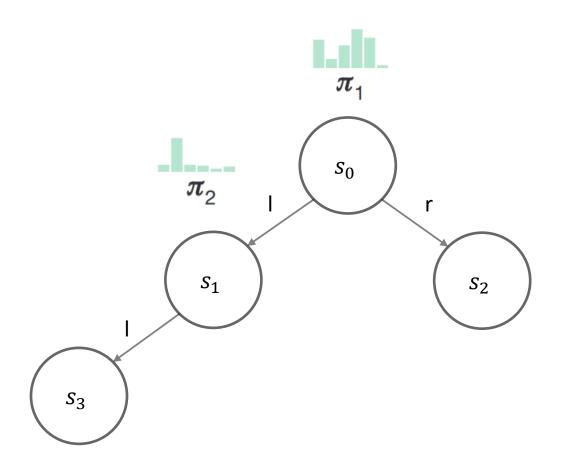
ALPHAZERO: SHARED NETWORK IMPROVEMENT



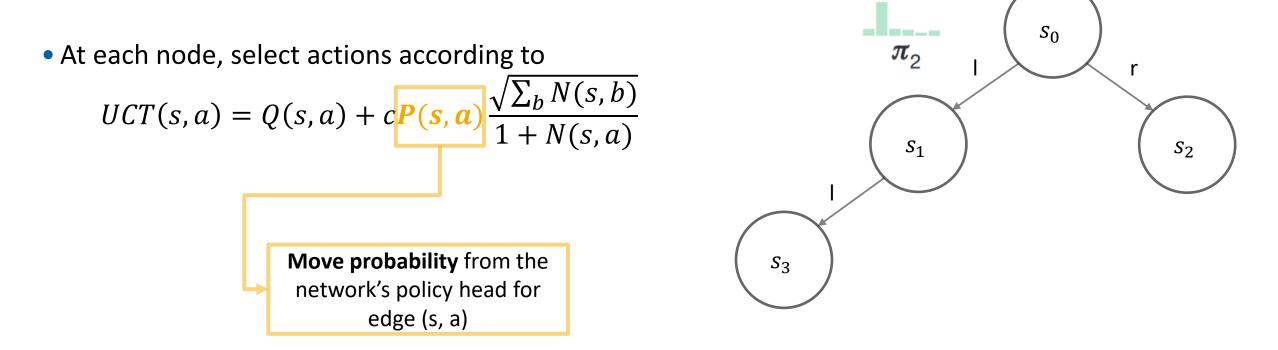
ALPHAZERO: SELECTION

• At each node, select actions according to

$$UCT(s,a) = Q(s,a) + c\mathbf{P}(s,a)\frac{\sqrt{\sum_{b} N(s,b)}}{1 + N(s,a)}$$

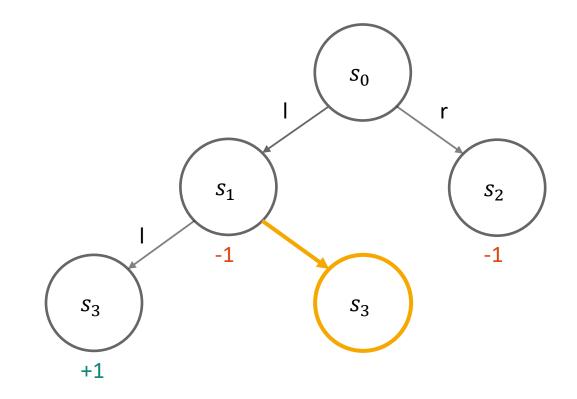


ALPHAZERO: SELECTION



 π_1

ALPHAZERO: EVALUATION/SIMULATION

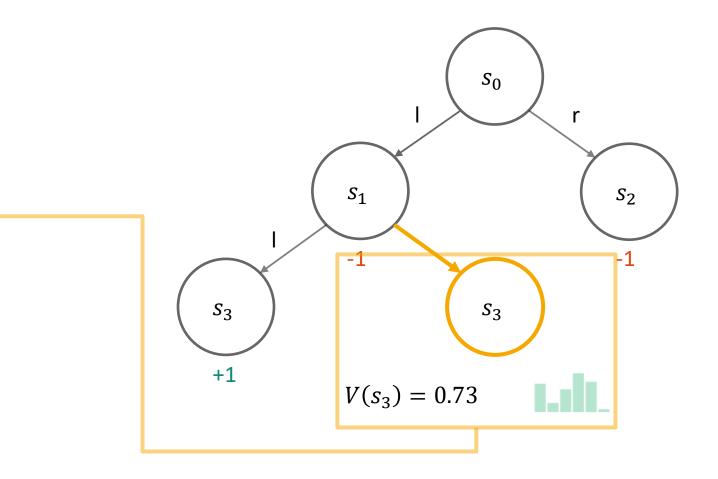


ALPHAZERO: EVALUATION/SIMULATION

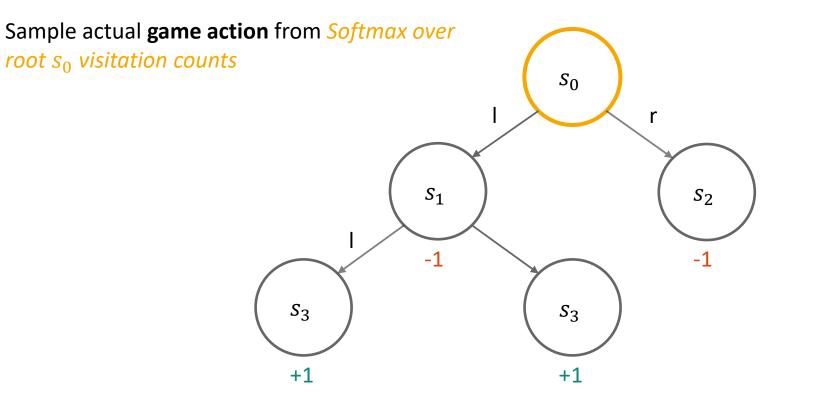
Neural network adds

- Probability distribution over moves
- Win probability (= Value estimate)

No simulation is run!



ALPHAZERO: PLAYED ACTION (DATA GENERATION)



• Network outputs $({\pmb{p}}, {\pmb{v}}) = f_{\theta}$

p: Move distribution*v*: Win probability

• Network outputs

$$(\boldsymbol{p}, \boldsymbol{v}) = f_{\theta}$$

p: Move probabilities*v*: Win probability

• Training data

$$(s_t, \boldsymbol{\pi}_t, z_t)$$

s_t: Actual game state π_t : MCTS selection probabilities z_t: Game outcome from view of current player

• Loss function

 $l = (z - v)^2 - \pi^T \log p + c ||\theta||^2$

Network outputs

$$(\boldsymbol{p}, \boldsymbol{v}) = f_{\theta}$$

p: Move probabilities*v*: Win probability

Training data

$$(s_t, \boldsymbol{\pi}_t, z_t)$$

 s_t : Game state π_t : MCTS selection probabilities z_t : Game outcome from view of current player

Loss function

 $l = (z - v)^2 - \pi^T \log p + c \left\|\theta\right\|^2$

- MSE between value prediction and winner
- Cross-Entropy between policy and MCTS output
- Weight decay

Network outputs

$$(\boldsymbol{p}, \boldsymbol{v}) = f_{\theta}$$

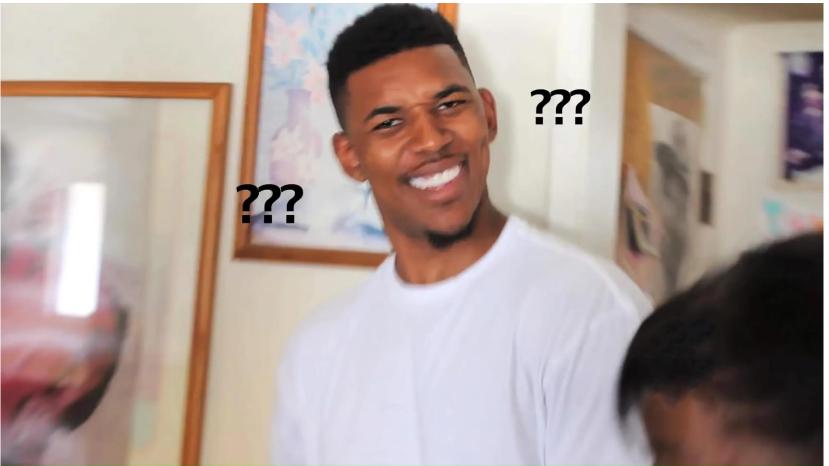
p: Move probabilities*v*: Win probability

• Training data

$$(s_t, \boldsymbol{\pi}_t, z_t)$$

 s_t : Game state π_t : MCTS selection probabilities z_t : Game outcome from view of current player

WHY DOES THIS WORK?



WHY DOES THIS WORK?

- At the start, policy outputs p_t will be complete garbage
- BUT: MCTS outputs $oldsymbol{\pi}_t$ will be a *little better*
- Starts a Self-Improving Loop

WHY DOES THIS WORK?

- ullet At the start, policy outputs p_t will be complete garbage
- BUT: MCTS outputs $oldsymbol{\pi}_t$ will be a *little better*
- Starts a Self-Improving Loop
- 1. Policy generates outputs
- 2. These are improved by MCTS
- 3. Policy is trained to match improved action probabilities
- 4. Repeat until superhuman

ENGINEERING & TRICKS

- Asynchronous data collection and training
- 5000 TPUs for data collection
- 4 days of training (for Go)
- Distributed network training
- MCTS parallelization with Virtual Loss
- Additional action noise at match start to avoid degeneration

LIMITATIONS OF ALPHAZERO

- Requires a *given* model of the environment
- Works only for discrete action spaces
- Environment must be fully observable
- Chess, Go etc. are deterministic environments
- Self-play works for zero-sum games only
- Crazy compute requirements for training

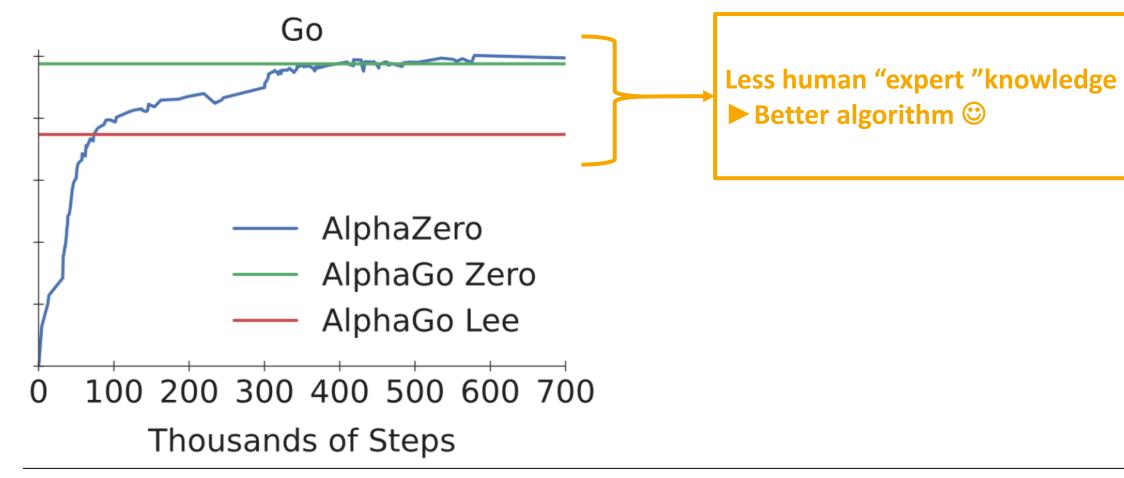
ALPHAZERO VS ALPHAGO

- AlphaGo uses separate policy and value networks
- AlphaGo pre-trains policy and value nets on human data
- AlphaGo still uses simulations with a simulation network
- AlphaGo uses many Go-specific heuristics

ALPHAZERO VS ALPHAGO ZERO

- AlphaGo Zero uses Go-specific data augmentations
- AlphaGo Zero uses more rollouts (1600 vs 800)
- AlphaGo Zero uses tournament selection to select network

ALPHAGO VS ALPHAGO ZERO VS ALPHAZERO



ALPHAZERO VS MUZERO



SAINT

- Social Artificial Intelligence Night
- 24.03.2023 | 16:30 | FH St. Pölten

SAINT

• 24.03.2023 | 16:30 | FH St. Pölten

REFERENCES

- Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., ... & Colton, S. (2012). A survey of monte carlo tree search methods. *IEEE Transactions on Computational Intelligence and AI in games*, *4*(1), 1-43.
- Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. *nature*, *529*(7587), 484-489.
- Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D. (2017). Mastering the game of go without human knowledge. *nature*, *550*(7676), 354-359.
- Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. *Science*, 362(6419), 1140-1144.
- Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., ... & Silver, D. (2020). Mastering atari, go, chess and shogi by planning with a learned model. *Nature*, *588*(7839), 604-609.

HOEFFDING'S INEQUALITY

Theorem (Hoeffding's Inequality)

Let $X_1, ..., X_t$ be i.i.d. random variables in [0,1], and let $\overline{X}_t = \frac{1}{\tau} \sum_{\tau=1}^t X_{\tau}$ be the sample mean. Then

$$\mathbb{P}\left[\mathbb{E}\left[X\right] > \overline{X}_t + u\right] \le e^{-2tu^2}$$

ALPHAZERO CHESS EXAMPLE

- Shows 10 most visited states
- Estimated value from white's perspective, scaled by factor of 100
- Thickness of node border represents visit counts

