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MODEL-BASED REINFORCEMENT LEARNING

• Last time: Model-free RL
►Learning purely from trial and error

• This time: Model-based RL
►We know how the environment works
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Dynamics are known!



MONTE CARLO TREE SEARCH

• Decision-time planning algorithm

• Uses heuristic search to build an asymmetric search tree
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MONTE CARLO TREE SEARCH (MCTS)

• Decision-time planning algorithm

• Uses heuristic search to build an asymmetric search tree

• Nice properties
Anytime (Can always stop and get something)
Best-first (Selects the best known action)
Human-like planning (Gets better with more thinking)
Diminishing returns (Already pretty good with few iterations)
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MCTS: PHASES
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MCTS: PRELIMINARIES
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• Nodes: States

• Edges: State-action pairs
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MCTS: PRELIMINARIES
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• Nodes: States

• Edges: State-action pairs

• 𝑠0: Root node (actual current environment state)

• Each edge stores
𝑁 𝑠, 𝑎 : Visitation count
W 𝑠, 𝑎 : Total action value
Q 𝑠, 𝑎 : Mean action value

𝑠1

𝑠0

𝑠2

𝑠3

l

l r



MCTS: SELECTION
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• At each node, select actions according to

𝑈𝐶𝑇 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝑐
σ𝑏𝑁(𝑠, 𝑏)

1 + 𝑁(𝑠, 𝑎) 𝑠1
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MCTS: SELECTION
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• At each node, select actions according to

𝑈𝐶𝑇 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝑐
σ𝑏𝑁(𝑠, 𝑏)

1 + 𝑁(𝑠, 𝑎) 𝑠1

𝑠0

𝑠2

𝑠3

l

l r

Upper confidence bound 
based on Hoeffding’s

inequality



MCTS: SELECTION EXAMPLE
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Statistic Value

𝑁 𝑠0, 𝑙 2

𝑁 𝑠0, 𝑟 1

𝑊 𝑠0, 𝑙 0

𝑊 𝑠0, 𝑟 −1

𝑄 𝑠0, 𝑙 1 0

𝑄 𝑠0, 𝑟 0 (−1)

𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1



MCTS: SELECTION EXAMPLE
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Statistic Value

𝑁 𝑠0, 𝑙 2

𝑁 𝑠0, 𝑟 1

𝑊 𝑠0, 𝑙 0

𝑊 𝑠0, 𝑟 −1

𝑄 𝑠0, 𝑙 1

𝑄 𝑠0, 𝑟 0

𝑈𝐶𝑇 𝑠0, 𝑙
1 +

3

3
≈ 1.577

𝑈𝐶𝑇 𝑠0, 𝑟
0 +

3

2
≈ 0.866

𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1



MCTS: EXPANSION EXAMPLE
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𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1

• Action r has not been taken in 𝑠1



MCTS: EXPANSION EXAMPLE
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𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1

• Action r has not been taken in 𝑠1►Expand it!

𝑠3



MCTS: SIMULATION EXAMPLE
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𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1

• Run simulation from 𝑠3 until a terminal state is reached

• Cheapest possible way: Uniform random selection

𝑠3

+1



MCTS: BACKUP EXAMPLE
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𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1

𝑠3

+1

Statistic Value

𝑁 𝑠0, 𝑙 2 + 1

𝑁 𝑠0, 𝑟 1

𝑊 𝑠0, 𝑙 0 + 1

𝑊 𝑠0, 𝑟 −1

𝑄 𝑠0, 𝑙
1

1

3

𝑄 𝑠0, 𝑟 0 −1



MCTS: BACKUP EXAMPLE
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𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1

𝑠3

+1

Statistic Value

𝑁 𝑠0, 𝑙 2 + 1

𝑁 𝑠0, 𝑟 1

𝑊 𝑠0, 𝑙 0 + 1

𝑊 𝑠0, 𝑟 −1

𝑄 𝑠0, 𝑙
1

1

3

𝑄 𝑠0, 𝑟 0 −1

Action selection: Use action 
with most visits



ALPHAZERO MOTIVATION

• Why doesn’t MCTS work for Go?
►Branching factor too large (Chess 35, Go 250)

• High-quality simulations are too costly
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ALPHAZERO MOTIVATION

• Why doesn’t MCTS work for Go?
►Branching factor too large (Chess 35, Go 250)

• High-quality simulations are too costly

• How can the tree search be made more efficient?

• Solution: Incorporate “prior” knowledge about move quality with NN
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ALPHAZERO: INTEGRATING NEURAL NETWORKS
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ALPHAZERO: SELF-PLAY
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ALPHAZERO: NETWORK ARCHITECTURE
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0.73

Trunk: ResNet with 20 blocks
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ALPHAZERO: NETWORK ARCHITECTURE
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0.73

Trunk: ResNet with 20 blocks

Policy head: Outputs distribution over moves
Value head: Outputs probability of victory



ALPHAZERO: SHARED NETWORK IMPROVEMENT
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ALPHAZERO: SELECTION
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• At each node, select actions according to

𝑈𝐶𝑇 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝑐𝑷(𝒔, 𝒂)
σ𝑏𝑁(𝑠, 𝑏)

1 + 𝑁(𝑠, 𝑎) 𝑠1

𝑠0

𝑠2

𝑠3

l

l r



ALPHAZERO: SELECTION
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• At each node, select actions according to

𝑈𝐶𝑇 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝑐𝑷(𝒔, 𝒂)
σ𝑏𝑁(𝑠, 𝑏)

1 + 𝑁(𝑠, 𝑎) 𝑠1

𝑠0

𝑠2

𝑠3

l

l r

Move probability from the 
network’s policy head for 

edge (s, a)



ALPHAZERO: EVALUATION/SIMULATION
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𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1

𝑠3



ALPHAZERO: EVALUATION/SIMULATION
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𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1

𝑠3

𝑉 𝑠3 = 0.73

Neural network adds
• Probability distribution over moves
• Win probability (= Value estimate)

►No simulation is run!



ALPHAZERO: PLAYED ACTION (DATA GENERATION)
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𝑠1

𝑠0

𝑠2

𝑠3

l

l r

+1

-1 -1

𝑠3

+1

Sample actual game action from Softmax over 
root 𝑠0 visitation counts



ALPHAZERO TRAINING

• Network outputs
𝒑, 𝑣 = 𝑓𝜃

𝒑: Move distribution
𝑣: Win probability
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ALPHAZERO TRAINING

• Network outputs
𝒑, 𝑣 = 𝑓𝜃

𝒑: Move probabilities
𝑣: Win probability

• Training data
(𝑠𝑡, 𝝅𝑡 , 𝑧𝑡)

st: Actual game state
𝝅t: MCTS selection probabilities
zt: Game outcome from view of current player
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ALPHAZERO TRAINING

• Loss function

𝑙 = 𝑧 − 𝑣 2 − 𝝅𝑇 log 𝒑 + 𝑐 𝜃
2

• Network outputs
𝒑, 𝑣 = 𝑓𝜃

𝒑: Move probabilities
𝑣: Win probability

• Training data
(𝑠𝑡, 𝝅𝑡 , 𝑧𝑡)

st: Game state
𝝅t: MCTS selection probabilities
zt: Game outcome from view of current player
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ALPHAZERO TRAINING

• Loss function

𝑙 = 𝑧 − 𝑣 2 − 𝝅𝑇 log 𝒑 + 𝑐 𝜃
2

• MSE between value prediction and winner

• Cross-Entropy between policy and MCTS 
output

• Weight decay

• Network outputs
𝒑, 𝑣 = 𝑓𝜃

𝒑: Move probabilities
𝑣: Win probability

• Training data
(𝑠𝑡, 𝝅𝑡 , 𝑧𝑡)

st: Game state
𝝅t: MCTS selection probabilities
zt: Game outcome from view of current player
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WHY DOES THIS WORK?
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WHY DOES THIS WORK?

• At the start, policy outputs 𝒑𝒕 will be complete garbage

• BUT: MCTS outputs 𝝅𝑡 will be a little better

• Starts a Self-Improving Loop
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WHY DOES THIS WORK?

• At the start, policy outputs 𝒑𝒕 will be complete garbage

• BUT: MCTS outputs 𝝅𝑡 will be a little better

• Starts a Self-Improving Loop

1. Policy generates outputs

2. These are improved by MCTS

3. Policy is trained to match improved action probabilities

4. Repeat until superhuman
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ENGINEERING & TRICKS

• Asynchronous data collection and training

• 5000 TPUs for data collection

• 4 days of training (for Go)

• Distributed network training

• MCTS parallelization with Virtual Loss

• Additional action noise at match start to avoid degeneration

• … 
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LIMITATIONS OF ALPHAZERO

• Requires a given model of the environment

• Works only for discrete action spaces

• Environment must be fully observable

• Chess, Go etc. are deterministic environments

• Self-play works for zero-sum games only

• Crazy compute requirements for training
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►Addressed by follow-up work



ALPHAZERO VS ALPHAGO

• AlphaGo uses separate policy and value networks

• AlphaGo pre-trains policy and value nets on human data

• AlphaGo still uses simulations with a simulation network

• AlphaGo uses many Go-specific heuristics
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ALPHAZERO VS ALPHAGO ZERO

• AlphaGo Zero uses Go-specific data augmentations

• AlphaGo Zero uses more rollouts (1600 vs 800)

• AlphaGo Zero uses tournament selection to select network
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ALPHAGO VS ALPHAGO ZERO VS ALPHAZERO
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Less human “expert ”knowledge
►Better algorithm ☺



ALPHAZERO VS MUZERO
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• ℎ: Encoder

• 𝑔: Dynamics function 

• 𝑓: Prediction function

• Training
Functions are jointly trained to 
predict K steps from real 
trajectory



SAINT

• Social Artificial Intelligence Night

• 24.03.2023 | 16:30 | FH St. Pölten
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SAINT

• 24.03.2023 | 16:30 | FH St. Pölten
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HOEFFDING’S INEQUALITY
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ALPHAZERO CHESS EXAMPLE

• Shows 10 most visited states

• Estimated value from white’s perspective,
scaled by factor of 100

• Thickness of node border represents visit counts
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