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Audio Inpainting

 Assume: audio signal has gap (missing or unreliable consecutive samples)
 Problem: reconstruct original signal within gap

I

signal with gap signal with filled gap
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» Key approach: exploit time-frequency (TF) sparsity of real-world audio signals
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Sparse Audio Inpainting

* |dea: use reliable samples from adjacent parts of the gap

!

set of all feasible signals: [ & {y € RV: Mgy = MRx}
x € RN time-domain signal
Mp:RY > RN ... binary “reliable mask” projection operator (keeps signal

samples corresponding to reliable part; sets others to zero)
4
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SPAIN Algorithm

« £,-minimization in TF domain subject to feasible set:

r{)linllbllo s.t. y€Ily and ||Ay —Db||, <€ (PO)
y

Illo ... number of non-zeros

A frame analysis operator (used to compute TF coefficients)

» Applies Alternating Direction Method of Multipliers (ADMM) to solve (PO0)
« Segment-wise implementation using redundant DFT dictionary and overlap-add method
 Similar to SPADE-algorithm for de-clipping

5
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Modified SPAIN Algorithm
* £y -minimization in TF domain, where the supremum is taken over time:
rgianIBIIo,oo s.t. y€Ix and [[n(Agy) —Bllg <€ (POoo)
IXl[o,0o = max{|Ixollo, Ix1llg, ) Ixx-1ll0}: where X = [Xq Xg =" Xg_1]
Illg ... Froebenius norm n(Ag -) ... real discrete Gabor transform (DGT)

Applies ADMM to solve (POoo)
Exploits conjugate-symmetry in TF domain

Works without segment-wise implementation

Not only for real DGT, but for arbitrary painless frames (& AHA is diagonal)
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Alternating Direction Method of Multipliers (ADMM)

e Solves:
myinf (y) + g(Ay),

wherey € CV, A: CN - CP linear operator, f and g are real convex functions

 Reformulation:
m%onf(y) +gb) s.t. Ay—b=0
Y,

 Fix sparsity paramter k, let S}, £ {X X g,00 < k}, and rewrite (POoo) with € = 0 as:

n]rgliyn L5, (B) + 4r (y) s.t. Agy—nT(B)=0
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Alternating Direction Method of Multipliers (ADMM)

* Augmented Lagrangian in scaled form:

o) 2 0
Ls(y,r,B) = £s, (B) + fr (y) + > |Agy —nT(B) + 1‘”2 —3 lIrll5

« Update rules:
BU*D = argmin ||Agy® —nT(B) + r(i)”2
B:lIBllo,co<k
y*D = argmin||Agy — nT(BED) + r®D||
yel'x 2
F+D) = p @) 4 ALy (+D) — pt(Bi+D)
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Modified SPAIN Algorithm

Algorithm 1: A-SPAIN-MOD
Input: Ag, Df}d, Mgrx, I'y, s, t, €

Output: X
1 v =Mgx, RO =0,i=0,k=s ] i
B+ _;EF( o) time-frequency hard-thresholding operator H, ¥ ( - )

egpinly DRI RO,
i Hy ([xo X1 " xg—1]) = [Hy (Xo) Hi(X1) - Hix(Xg-1)]

4 if [n(Acy") — BUFD[| 2
5 terminate

6 else
7 RO+ = RO L n(AGy(i—H)) — BG+1)
8 14—1+1

9 if i mod ¢ = 0 then

10 L kE+—k+s

1 | goto2

inverse real DGT D& (nt(-))

12 return x = y(i+1)
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Dictionary Learning

 Learns frame from neighborhood of gap, such that TF sparsity is maximized:

min I(n(AX)|Nloo s-t. AMAis diagonal

« Deforms given Gabor frame by unitary transformation:

min UM AN o005 U ... subset of unitary matrices

* Relaxation:

min z UM (Acx)Iqlly

Uelu
qeEN

 Solved by basis optimization technigue originally developed for wireless communications
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Dictionary Learning

N

Frequency (Hz)

Frequency (Hz)

'1 - (@) ... Gabor dictionary without gap
« (b) ... learned dictionary without gap

- S w (¢) ... Gabor dictionary with gap
- = (d) ... learned dictionary with gap
. . Coefficients within green rectangles
A —— A ——— . are used for training
(c) (d)

analysis coefficients of signal “a35_glockenspiel”
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Learned SPAIN Algorithm

Algorithm 3: A-SPAIN-LEARNED

Input: A(}, ng Ue/o,
Output: x
1 y©@ = Mpx, R® =0, §

) BEHD) — HEF( Agy®)

RX? FX? 89 t’ €

arg min ||y — D& (nT(iH) -
yely

4 if ‘er/On(AGy(i"'l)) — B(“'I)HF < ¢ then
5 terminate

¢ else Ue/o = U obtained by basis optimization technique
7 | RGEHD — R® Agy®D)) — BE+D

8 | 1+ 141

9 | if¢ mod ¢t =0 then

0 | | kekts
1| goto?

12 return ¥ = y(it) 12
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Basis optimization technique

e Aims at solving:

min > U0 Ac)qll;

Ueu
qeEN

e [dea:

U=e! = 1+iH, H Hermitian, ||H|| small
« At rth iteration:

H™ = argmin Z |1+ iH) UM (17(A(;,X))|q||1 and UTHD = oHT y®
HeX
T

H, ... setofall Hermitian matrices with ||H|| < p, 13
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Dictionary Learning

>
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Audio Inpainting via Weighted £ -Minimization
* £,-minimization in TF domain subject to feasible set:
min|[n(Agyllo st yE€EI} (PO) non-convex
y

« Convex relaxation via weighted £{-minimization:
myinIIWGn(AGy)Ih +4r, (¥) (WP1)

wo ... element-wise multiplication with weighting vector w

« (WP1) is solved by using a proximal algorithm (Chambolle Pock)

15
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Learned Weighted £;-Minimization

* Weighted £;-minimization using learned dictionary:
myinIIwLGU n(Acy)lls + 4r, (¥) (WL1)

wr ... hew weighting vector adapted to learned dictionary

* (WL1) is solved by using a proximal algorithm (Chambolle Pock)

16
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Simulations — Setup

 Performance measures:

« signal-to-noise ratio (SNR): SNI'(Xorig Xinp) = 10 logy, llX()':;’fipr"% [dB]
« PEMO-Q criterion: objective difference grade (ODG)
» Test signals: 10 music recordings from the EBU dataset (sampled with 44.1 kHz)
 (Gaps: 5 gaps at random positions; lengths: 5 ms — 85 ms

« TF dictionary: tight Gabor frame with Hann window
* window length: w, = 2800 samples = ~64 ms

» window shift: a = 700 samples
« M = 2800 frequency channels

17
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Simulations — Performance Comparison
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