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Motivation

• particle localization and classification are important challenges
• supervised deep learning methods have been successfully introduced
• large amounts of training data is required (usually manually labeled)
• some small and/or scarce particles are impossible to manually label
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Main Contributions

We propose FakET:

• an efficient method for simulating projections from a TEM
• based on neural style transfer
• generates data of comparable quality to state-of-the-art methods
• much faster, requires less memory, and scales well to standard tomogram sizes
• valuable tool for researchers in structural biology
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*figure from Gatys et al. 2016 4
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Related literature



Neural Style Transfer

Image Style Transfer Using Convolutional Neural
Networks, Gatys, Leon A., et al. CVPR (2016).

• Seminal paper proposing Neural Style Transfer
• for separation and recombination of content and style
• uses CNN as image representation extractor
• VGG19 net pre-trained on Imagenet data set



SHREC Challenge

SHREC 2020: Classification in cryo-electron tomo-
grams, Gubins, Ilja, et al. Computers & Graphics (2020).

• SHREC Challenge (active in 2019, 2020, 2021)
• particle localization and classification tasks
• simulates a set of 10 cryo-electron tomograms
• DeepFinder was one of the most successful methods



Deep Finder

Deep learning improves macromolecule identifi-
cation in 3D cellular cryo-electron tomograms,
Moebel, Emmanuel, et al. Nature methods (2021).

• Proposes DeepFinder neural network
• for particle localization and classification
• evaluates on SHREC Challenge data set
• evaluates also on experimental data set



Methods
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Tilt-dependent noise
estimation
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Simulating Projections



Projections noiseless & SHREC

0 200 400 600 800 1000

0

200

400

600

800

1000 700

600

500

400

300

200

100

0

0 200 400 600 800 1000

0

200

400

600

800

1000

100

150

200

250

12



Projections baseline & noisy
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Projections content & faket
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Reconstructions



Reconstruction SHREC vs. benchmark
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Reconstruction SHREC vs. benchmark
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Experiments & Results



Experiments

benchmark → DeepFinder (train 70 ep.) → test on SHREC 10th (segm., clust., eval.)
faket → DeepFinder (train 70 ep.) → test on SHREC 10th (segm., clust., eval.)
baseline → DeepFinder (train 70 ep.) → test on SHREC 10th (segm., clust., eval.)

We also computed:

noiseless → DeepFinder (train 50 ep.) → test on noiseless 10th (segm., clust., eval.)
SHREC → DeepFinder (train 50 ep.) → test on SHREC 10th (segm., clust., eval.)

*9 training tomograms equals to 688 batches 17
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Results - DeepFinder Limits
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*One gradient update on x axis actually stands for 688 updates. Localization task (left) & classification task (right). 18



Results

0 80 160 240 320 400 480 560
GRADIENT UPDATE

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

F1
 S

C
O

R
E

METHOD
BENCHMARK
BASELINE
FAKET

0 80 160 240 320 400 480 560
GRADIENT UPDATE

0.33

0.36

0.39

0.42

0.45

0.48

0.51

0.54

0.57

0.60

0.63

F1
 M

AC
R

O
 S

C
O

R
E

METHOD
BENCHMARK
BASELINE
FAKET

*One gradient update on x axis actually stands for 688 updates. Localization task (left) & classification task (right). 19



Results
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*Particles are ordered from smallest to largest. 20



Results

*All models are tested on SHREC 10th tomogram. 21



Confusion Matrix benchmark
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Confusion Matrix faket
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Confusion Matrix baseline
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Conclusions

• faket, a novel method for simulating the forward operator of TEM
• faket combines additive noise and neural style transfer (NST)
• allows practitioners to generate synthetic cryo-electron tilt series
• 750× faster and uses 33× less memory than SHREC simulator
• GPU accelerated but can be also computed only using CPUs
• provides practitioners with annotated data to train neural networks
• provides annotated data for particles that are hard to manually label
• useful among other things in particle localization and classification
• capable of simulating large tilt series common in experimental environments
• open-source
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Outlook

• validation on real experimental data
• fine-tuning the NST network on tomographic data
• making user-friendly CLI interface
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The Goal

Happy structural biol-
ogists who use FakET
to solve their problems.
Laboratory, emotional,
excited, happy, hyper-
realistic, portrait, male
and female, there is an
electron microscope in
the background, they
are looking at a com-
puter display showing
a detail of a cell.

Image generated using:
https://midjourney.com

https://midjourney.com
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