

FakET: Simulating Cryo-Electron Tomograms with Neural Style Transfer

Pavol Harar^{1,2,3} \bigcirc 0000-0001-5206-1794

Deep Learning Seminar @dsUniVie

Vienna, 27. January 2023

¹University of Vienna, ²Research Institute of Molecular Pathology, ³Brno University of Technology

Article

- Devol Harar (UniVie, IMP, BUT)
- **Lukas Herrmann** (ÖAW)
- Philipp Grohs (UniVie, ÖAW)
- David Haselbach (IMP)

Preprint: doi: 10.48550/arXiv.2304.02011 Repository: gitlab.com/deepet/faket

Citation:

```
@misc{harar2023faket,
title = {FakET: Simulating Cryo-Electron Tomograms with Neural Style Transfer},
author = {Harar, P. and Herrmann, L. and Grohs, P. and Haselbach, D.},
publisher = {arXiv},
year = {2023},
doi = {10.48550/ARXIV.2304.02011},
url = {https://arXiv.org/abs/2304.02011},
note = {submitted}}
```

FakET: Simulating Cryo-Electron Tomograms with Neural Style Transfer @Powel Honor^{1,2,3} @Lukas Herrmann⁴ @Philinn Grobs^{1,4,5} and @David Hoselbach² ¹Itsmundt Mereck Data Beinen, University of Visno, Austria ²Bruine Munder, Kuritter at Materiale Pethology, Yono, Austria ²Bruin Diamos Nashyai Lakarasay, Buu University of Technology, Proc. Onch Republic ⁴Jaham Bahan Mahara & Comparisational and Application Mathematics. Austria Analysis of Beinesen, Lian, America ⁴Jaham Bahara Mahara and Applicational and Application Mathematics. Austria Mathematics of Beinesen, Lian, America ⁴Jaham Bahara Mahara and Applicational and Applicational Mathematics. Austria Mathematics of Beinesen, Lian, America ⁴Jaham Bahara Mahara Mahara Mathematicational Applicational Mathematics. Austria Mathematics of Beinesen, Lian, America ⁴Jaham Bahara Mathematics and Applicational Mathematics and Applicational Mathematics and Applicational Mathematics ⁴Jahara Mathematics and Applicational Mathematics and Applicational Mathematics and Applicational Mathematics ⁴Jahara Mathematics and Applicational Mathematics and Applicational Mathematics and Applicational Mathematics ⁴Jahara Mathematics and Applicational Mathematics and Applicational Mathematics and Applicational Mathematics ⁴Jahara Mathematics and Applicational Mathematics and Applicational Mathematics and Applicational Mathematics and Applicational Mathematics ⁴Jahara Mathematics and Applicational Mathe Abstract 1 Introduction 120200. Is erroET, the imaged sample is in most cases projection magos are taken in a transmission rectron microscope (VEM) from different rotation (101) makes An artifact from reconstruction workd require measure O'BeiDy et al. [2020]. Malagraid et al. [2016], the adverresoFT in the larger cell bickeys and structural bickey Research --- Machine Learning, Dava Learning, CruchT. and armotated data to develop the software tools on. 1.1 SHREC simulator Advantational The DIP and D II, are exceeded To overcome the problem with the lack of data, in 2019. the arread SHREC - 3D Share Retrieval Contest in-

- particle localization and classification are important challenges
- supervised deep learning methods have been successfully introduced
- large amounts of training data is required (usually manually labeled)
- some small and/or scarce particles are impossible to manually label

We propose FakET:

- an efficient method for simulating projections from a TEM $\,$
- based on **neural style transfer**
- generates data of comparable quality to state-of-the-art methods
- much faster, requires less memory, and scales well to standard tomogram sizes
- valuable tool for researchers in structural biology

Content image (input)

Style-transferred image (output)

Style image (input)

*figure from Gatys et al. 2016

Simulated projection (output)

Noiseless projection (input)

TEM projection (input)

Related literature

Image Style Transfer Using Convolutional Neural Networks, Gatys, Leon A., et al. CVPR (2016).

- Seminal paper proposing Neural Style Transfer
- for separation and recombination of content and style
- uses CNN as image representation extractor
- VGG19 net pre-trained on Imagenet data set

SHREC 2020: Classification in cryo-electron tomograms, Gubins, Ilja, et al. Computers & Graphics (2020).

- SHREC Challenge (active in 2019, 2020, 2021)
- particle localization and classification tasks
- simulates a set of 10 cryo-electron tomograms
- DeepFinder was one of the most successful methods

Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms, Moebel, Emmanuel, et al. Nature methods (2021).

- Proposes DeepFinder neural network
- for particle localization and classification
- evaluates on SHREC Challenge data set
- evaluates also on experimental data set

Methods

Tilt-dependent noise estimation

Projections 0

Projections 1

Simulating Projections

Projections noiseless & SHREC

Projections BASELINE & noisy

Projections content & FAKET

Reconstructions

Reconstruction SHREC vs. BENCHMARK

Reconstruction SHREC vs. BENCHMARK

Experiments & Results

We also computed:

 $noiseless \rightarrow \text{DeepFinder} (\text{train 50 ep.}) \rightarrow \text{test on } noiseless 10^{th} (\text{segm., clust., eval.})$ SHREC $\rightarrow \text{DeepFinder} (\text{train 50 ep.}) \rightarrow \text{test on SHREC } 10^{th} (\text{segm., clust., eval.})$

Results - DeepFinder Limits

*One gradient update on x axis actually stands for 688 updates. Localization task (left) & classification task (right).

*One gradient update on x axis actually stands for 688 updates. Localization task (left) & classification task (right).

MODEL	TRAIN DATA	DATA COST	LOCALIZATION F1	CLASSIFICATION F1
DF	BENCHMARK	$\approx 150 h (3 \times CPU, 114 \text{ GB RAM})$	0.815	0.581 (100%)
DF	FAKET	$\approx 12 m (1 \times \text{GPU}, 40 \text{ GB VRAM})$	0.800	0.533~(92%)
DF	BASELINE	$\approx 20 s (1 \times CPU, 1 \text{ GB RAM})$	0.813	0.441
TM-F			0.576	0.446
TM			0.372	0.470

Confusion Matrix BENCHMARK

				nall partic	es	medium particles					large particles				
Ŀ	oackg.														
	1S3X n=122	82% (79-85)	6% (3-9)	7% (4-9)	2% (0-3)	3% (1-5)									
:	3QM1 n=120	65% (61 - 69)	2% (1-3)	16% (13-18)	8% (6-9)	5% (3-8)	2% (1-2)	1% (0-3)	1% (0-2)						
	$3GL1 \\ n = 123$	59% (57 – 61)		5% (3-8)	17% (12-22)	4% (3-6)	9% (6-12)	5% (3-7)	1% (0-2)						
	$3H84 \\ n = 144$	34% (31-37)		3% (1-6)	2% (0-3)	38% (31-43)	6% (3-9)	10% (3-18)	5% (3-6)			1% (0-2)	1% (0-1)	1% (1-1)	
0	2CG9 n=125	27% (25-29)			1% (1-2)	3% (2-4)	41% (35-46)	7% (4-10)	17% (15-20)			1% (0-1)		3% (2-4)	
, FW	$_{n=140}^{3D2F}$	18% (16-20)				9% (6-12)	4% (2-6)	54% (48-61)	11% (9-13)			3% (2-4)		1% (0-1)	
-1 -1	1U6G n=143	23% (21-24)				2% (1-3)	8% (6-11)	6% (3-8)	48% (46-51)	3% (1-4)		9% (6-12)		1% (0-1)	
	3CF3 n = 139	3% (2-3)								84% (81 - 86)	1% (1-1)	11% (9-14)	2% (0-3)		
	$1BXN_{n=135}$	4% (3-5)								1% (0-1)	95% (93 - 96)				
	1QVR n = 127	2% (1-3)								1% (0-2)		91% (90-92)	6% (5 - 7)		
	$4CR2 \\ n = 115$												99% (98 – 100)	1% (0-2)	
Ę	5 MRC $n = 121$													100% (100 – 100)	
fi	ducial	23% (18-27)													77% (73-82)
		backg.	1S3X	3QM1	3GL1	3H84	2CG9	3D2F	1U6G	3CF3	1BXN	1QVR	4CR2	5MRC	fiducial

TRUE CLASS

		small particles						medium particles					large particles		
backg.															
1S3X n=122	82% (78-85)	11% (9-14)	3% (0 - 7)	1% (0-2)	2% (0-5)			1% (0-2)							
3QM1 n=120	69% (65 – 72)	9% (6-14)	10% (8-12)	4% (2-7)	5% (3-9)	1% (0-1)	1% (0-2)	1% (0-2)							
3GL1 n=123	64% (62 - 66)	3% (1-6)	5% (3 – 7)	14% (12-17)	6% (4-10)	3% (1-6)	3% (2-5)	2% (0-4)							
3H84 n=144	37% (35-40)	2% (0-7)	3% (1-5)	2% (1-3)	40% (33-45)	2% (1-4)	5% (3-8)	7% (2-14)							
2CG9 n=125	31% (26-35)	1% (0-2)	1% (0-2)	4% (2-6)	6% (4-8)	29% (26-30)	10% (7-12)	16% (8-26)			1% (0-2)	1% (0-2)	1% (0-2)		
3D2F n=140	23% (22-24)	1% (0-2)	1% (0-2)	1% (0-2)	8% (4-12)	1% (1-2)	52% (47 – 58)	11% (4-17)			1% (0-3)				
1U6G n=143	28% (25-31)	1% (0-1)		1% (0-1)	7% (3-12)	7% (5-10)	9% (4-13)	43% (33-52)	1% (0-1)		4% (1-7)	1% (0-1)			
3CF3 n=139	4% (4-4)							3% (1-6)	71% (67 - 75)		18% (13-23)	4% (2-6)			
1BXN n=135	3% (2-4)								8% (4-11)	85% (80 – 89)		4% (2-6)			
$1_{n=127}^{10}$	1% (0-3)				1% (0-2)			1% (0-2)	1% (1-2)		88% (83 – 92)	8% (4-15)			
$4CR2_{n=115}$											2% (0-3)	98% (96 – 100)			
5MRC n = 121												27% (4-43)	73% (57 – 96)		
$\underset{n=11}{\text{fiducial}}$	24% (18-27)													76% (73-82)	
	backg.	1S3X	3QM1	3GL1	3H84	2CG9	3D2F	1U6G	3CF3	1BXN	1QVR	4CR2	5MRC	fiducial	

TRUE CLASS

Confusion Matrix BASELINE

			sn	medium particles					large particles					
back	J.													
1S3 n=13	X 85% (82 - 89)	2% (0-3)	8% (6-11)	1% (0-2)	3% (2-5)		1% (0-2)							
3QM n=13	1 68% (66 - 71)	2% (1-3)	13% (8-19)	7% (5-8)	5% (2-8)	1% (1-2)	3% (1-5)							
3GL n = 13	1 58% (55 - 60)	1% (0-2)	4% (2-7)	17% (14-20)	7% (6-9)	4% (2-6)	8% (6-10)	1% (0-2)						
3H8 n=14	4 38% (36-40)		4% (1-7)	4% (3-4)	28% (26-32)	2% (1-4)	21% (18-25)	1% (0-2)				1% (0-1)		
2CG	9 28% 5 (26 - 30)		1% (0-2)	4% (1-8)	8% (5-10)	36% (30-42)	19% (15-22)	4% (2-5)						
3D2	F 18% (16-21)			1% (0-2)	7% (6-8)	6% (4 - 7)	67% (62 - 71)	1% (0-1)						
1U6	G 21% (18-24)				6% (5-7)	15% (12-19)	41% (36-45)	15% (13-18)			1% (0-2)			
3CF n=1	3 3% (3-4)					1% (0-2)	1% (0-3)	5% (3 - 7)	60% (53 - 68)		29% (25 - 33)			
1 BX n = 13	N 3% (3 - 4)								10% (6-15)	87% (81 - 91)				
1 QV n = 12	R 4% (2-5)						5% (2-7)	1% (0-2)			90% (88 - 93)			
4CR n=1	25										18% (11-24)	81% (74 - 89)		
5MR n=12	C ₁											66% (55 – 78)	33% (22 – 45)	
fiduci n=1	24% (18-27)									23% (0-55)				53% (27 – 73)
	backg.	1S3X	3QM1	3GL1	3H84	2CG9	3D2F	1U6G	3CF3	1BXN	1QVR	4CR2	5MRC	fiducial

TRUE CLASS

Conclusions

- FAKET, a novel method for simulating the forward operator of TEM
- FAKET combines additive noise and neural style transfer (NST)
- allows practitioners to generate synthetic cryo-electron tilt series
- + 750× faster and uses 33× less memory than SHREC simulator
- GPU accelerated but can be also computed only using CPUs
- provides practitioners with annotated data to train neural networks
- provides annotated data for particles that are hard to manually label
- useful among other things in particle localization and classification
- capable of simulating large tilt series common in experimental environments
- open-source

- validation on real experimental data
- fine-tuning the NST network on tomographic data
- making user-friendly CLI interface

Happy structural biologists who use FakET to solve their problems. Laboratory, emotional, excited, happy, hyperrealistic, portrait, male and female, there is an electron microscope in the background, they are looking at a computer display showing a detail of a cell.

Image generated using: https://midjourney.com

Pavol Harar pavol.harar.eu

Received an MSc in System Engineering and Informatics and a PhD in Machine Learning from Brno University of Technology. Gained experience in predictive modeling, signal processing, and parallel computing as a member of Brain Diseases Analysis Laboratory and Numerical Harmonic Analysis Group. At the time of presentation a postdoc at the Data Science Research Network @UniVie and a visiting postdoc at the Institute of Molecular Pathology in Vienna.