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AGENT-ENVIRONMENT FRAMEWORK
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• Agent selects action 𝑎𝑡 based on state 𝑠𝑡

• Observes next state 𝑠𝑡+1 and reward 𝑟𝑡+1

RL + some research directions Sources: Sutton & Barto (2018)



MARKOV DECISION PROCESS (MDP)
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• Formally: 5-tuple ℳ=⟨𝒮,  𝒜,  𝑃,  𝑅,  𝛾⟩ .

• Goal: max𝔼𝜋[σ𝑡=1
𝑇 𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)] by finding an optimal policy 𝜋⋆ .

RL + some research directions Sources: Sutton & Barto (2018)



NOTATION & TERMS
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Name Notation

Transition function 𝑠′ ∼ 𝑃(𝑠′ ∣ 𝑠, 𝑎)

Reward function 𝑟 ∼ 𝑅(𝑠, 𝑎)

Policy 𝑎 ∼ 𝜋(𝑎 ∣ 𝑠)

Value function

𝑉𝜋 𝑠 = 𝔼 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝜋

Q-function
(Action-Value function) 𝑄𝜋 𝑠, 𝑎 = 𝔼 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋

Bellman equation 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

Sources: Sutton & Barto (2018)
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Name Notation

Transition function 𝑠′ ∼ 𝑃(𝑠′ ∣ 𝑠, 𝑎)

Reward function 𝑟 ∼ 𝑅(𝑠, 𝑎)

Policy 𝑎 ∼ 𝜋(𝑎 ∣ 𝑠)

Value function

𝑉𝜋 𝑠 = 𝔼 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝜋

Q-function
(Action-Value function) 𝑄𝜋 𝑠, 𝑎 = 𝔼 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋

Bellman equation 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

Use NNs for this
►deep RL

Sources: Sutton & Barto (2018)



MODEL-FREE VS MODEL-BASED

• Model-free RL
Estimate directly 𝜋, 𝑄𝜋(𝑠, 𝑎) from samples

• Model-based RL
1. Try to estimate ෠𝑃(𝑠′ ∣ 𝑠, 𝑎) (and) ෠𝑅(𝑠, 𝑎)
2. Use these to train 𝜋, 𝑄𝜋(𝑠, 𝑎)
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MODEL-FREE: (DEEP) Q-LEARNING

• Remember the Bellman equation
𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]
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MODEL-FREE: (DEEP) Q-LEARNING

• Remember the Bellman equation
𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

• Here we use the Bellman optimality equation
𝑄𝑡𝑎𝑟
𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾max

𝑎′
𝑄𝜋 𝑠′, 𝑎′ ]
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𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾max

𝑎′
𝑄𝜋 𝑠′, 𝑎′ ]

• Idea: Directly approximate 𝑄𝜋 using 𝑄𝑡𝑎𝑟
𝜋
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MODEL-FREE: (DEEP) Q-LEARNING

• Remember the Bellman equation
𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

• Here we use the Bellman optimality equation
𝑄𝑡𝑎𝑟
𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾max

𝑎′
𝑄𝜋 𝑠′, 𝑎′ ]

• Idea: Directly approximate 𝑄𝜋 using 𝑄𝑡𝑎𝑟
𝜋

• Objective function

𝐿(𝜃) =
1

𝑁
𝑄𝜃
𝜋 𝑠, 𝑎 − 𝑄𝑡𝑎𝑟

𝜋 𝑠, 𝑎
2
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EXPLORATION-EXPLOITATION IN Q-LEARNING

• Naïve Q-learning policy max
a

𝑄(𝑠, 𝑎) never explores
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EXPLORATION-EXPLOITATION IN Q-LEARNING

• Naïve Q-learning policy max
a

𝑄(𝑠, 𝑎) never explores

• Solution: Use 𝜖-greedy action selection
Select optimal action with probability 1 − 𝜖
Select random action with probability 𝜖
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• This makes Q-Learning an off-policy algorithm

08/02/2023 RL + some research directions Page 14



EXPLORATION-EXPLOITATION IN Q-LEARNING

• Naïve Q-learning policy max
a

𝑄(𝑠, 𝑎) never explores

• Solution: Use 𝜖-greedy action selection
Select optimal action with probability 1 − 𝜖
Select random action with probability 𝜖

• This makes Q-Learning an off-policy algorithm

• Data comes from 𝜖-greedy policy
But we’re learning the greedy policy 𝑄𝑡𝑎𝑟

𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾max
𝑎′

𝑄𝜋 𝑠′, 𝑎′ ]
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MODEL-FREE: POLICY GRADIENT (INTUITION)
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MODEL-FREE: POLICY GRADIENT

• RL goal: Find policy that maximizes reward
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MODEL-FREE: POLICY GRADIENT

• RL goal: Find policy that maximizes reward

• Why can’t we do gradient descent on the objective?
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MODEL-FREE: POLICY GRADIENT

• RL goal: Find policy that maximizes reward

• Why can’t we do gradient descent on the objective?

• Because 𝑅 is non-differentiable!

• Solution 1: Use the likelihood-ratio estimator

• Solution 2: Approximate expectation with MC
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MODEL-FREE: ACTOR-CRITIC
• Policy gradient works, but there are some problems
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MODEL-FREE: ACTOR-CRITIC
• Policy gradient works, but there are some problems
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Unbiased, but high variance
Does not capture relative quality of action



MODEL-FREE: ACTOR-CRITIC
• Policy gradient works, but there are some problems

• Solution 1: Combine Policy Gradient with TD Learning

∇ 𝜃𝐽 𝜋𝜃 = 𝔼𝜏∼𝜋𝜃 ෍

𝑡=0

𝑇

𝑄𝜋 𝑠𝑡, 𝑎𝑡 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡

08/02/2023 RL + some research directions Page 24

Unbiased, but high variance
Does not capture relative quality of action



MODEL-FREE: ACTOR-CRITIC
• Policy gradient works, but there are some problems

• Solution 1: Combine Policy Gradient with TD Learning

∇ 𝜃𝐽 𝜋𝜃 = 𝔼𝜏∼𝜋𝜃 ෍

𝑡=0

𝑇

𝑄𝜋 𝑠𝑡, 𝑎𝑡 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡

• Solution 2: Subtract a state-dependent baseline

∇ 𝜃𝐽 𝜋𝜃 = 𝔼𝜏∼𝜋𝜃 ෍

𝑡=0

𝑇

(𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)) ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡
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Unbiased, but high variance
Does not capture relative quality of action



MODEL-FREE: THE ADVANTAGE FUNCTION

• The previous slide used a quantity called advantage function
A𝜋 st, at = 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)

08/02/2023 RL + some research directions Page 26



MODEL-FREE: THE ADVANTAGE FUNCTION

• The previous slide used a quantity called advantage function
A𝜋 st, at = 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)

• Must estimate two functions 𝑄𝜋 and 𝑉𝜋

►Error prone and expensive

08/02/2023 RL + some research directions Page 27



MODEL-FREE: THE ADVANTAGE FUNCTION

• The previous slide used a quantity called advantage function
A𝜋 st, at = 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)

• Must estimate two functions 𝑄𝜋 and 𝑉𝜋

►Error prone and expensive

• Can we do better?

08/02/2023 RL + some research directions Page 28



MODEL-FREE: THE ADVANTAGE FUNCTION

• The previous slide used a quantity called advantage function
A𝜋 st, at = 𝑄𝜋 𝑠𝑡, 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)

• Must estimate two functions 𝑄𝜋 and 𝑉𝜋

►Error prone and expensive

• Can we do better?

• YES! Estimate advantage using only 𝑉𝜋

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼𝜋 𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1
𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼𝜋 𝑟𝑡+1 + 𝔼𝜋 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1
𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼𝜋 𝑟𝑡+1 + 𝛾𝑉𝜋 𝑠𝑡+1
A𝜋 st, at ≈ 𝑟𝑡+1 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡)
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CONCLUSION

• RL ports dynamic programming to large problems with sampling

• Deep RL approximates quantities with NNs

• There is model-free and model-based RL

• Three families of model-free deep RL algorithms

• Most strong current algorithms (PPO, SAC, TD3) are Actor-Critic algorithms
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Name Type Approximated functions Data used Action space

Q-Learning Value-based 𝑄(𝑠, 𝑎) Off-policy Discrete

Policy gradient/REINFORCE Policy-based 𝜋(𝑎 ∣ 𝑠) On-policy Continuous + Discrete

Actor-Critic Combined Combinations of 𝑄, 𝜋, 𝑉 Depends Continuous + Discrete
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