
REINFORCEMENT LEARNING
Timo Klein | 11.01.2023

AGENT-ENVIRONMENT FRAMEWORK

08/02/2023 Page 2

• Agent selects action 𝑎𝑡 based on state 𝑠𝑡

• Observes next state 𝑠𝑡+1 and reward 𝑟𝑡+1

RL + some research directions Sources: Sutton & Barto (2018)

MARKOV DECISION PROCESS (MDP)

08/02/2023 Page 3

• Formally: 5-tuple ℳ=⟨𝒮, 𝒜, 𝑃, 𝑅, 𝛾⟩ .

• Goal: max𝔼𝜋[σ𝑡=1
𝑇 𝛾𝑡𝑟(𝑠𝑡 , 𝑎𝑡)] by finding an optimal policy 𝜋⋆ .

RL + some research directions Sources: Sutton & Barto (2018)

NOTATION & TERMS

08/02/2023 Page 4RL + some research directions

Name Notation

Transition function 𝑠′ ∼ 𝑃(𝑠′ ∣ 𝑠, 𝑎)

Reward function 𝑟 ∼ 𝑅(𝑠, 𝑎)

Policy 𝑎 ∼ 𝜋(𝑎 ∣ 𝑠)

Value function

𝑉𝜋 𝑠 = 𝔼 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝜋

Q-function
(Action-Value function) 𝑄𝜋 𝑠, 𝑎 = 𝔼 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋

Bellman equation 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

Sources: Sutton & Barto (2018)

NOTATION & TERMS

08/02/2023 Page 5RL + some research directions

Name Notation

Transition function 𝑠′ ∼ 𝑃(𝑠′ ∣ 𝑠, 𝑎)

Reward function 𝑟 ∼ 𝑅(𝑠, 𝑎)

Policy 𝑎 ∼ 𝜋(𝑎 ∣ 𝑠)

Value function

𝑉𝜋 𝑠 = 𝔼 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝜋

Q-function
(Action-Value function) 𝑄𝜋 𝑠, 𝑎 = 𝔼 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋

Bellman equation 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

Use NNs for this
►deep RL

Sources: Sutton & Barto (2018)

MODEL-FREE VS MODEL-BASED

• Model-free RL
Estimate directly 𝜋, 𝑄𝜋(𝑠, 𝑎) from samples

• Model-based RL
1. Try to estimate ෠𝑃(𝑠′ ∣ 𝑠, 𝑎) (and) ෠𝑅(𝑠, 𝑎)
2. Use these to train 𝜋, 𝑄𝜋(𝑠, 𝑎)

08/02/2023 RL + some research directions Page 6Sources: Sutton & Barto (2018)

MODEL-FREE: (DEEP) Q-LEARNING

• Remember the Bellman equation
𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

08/02/2023 RL + some research directions Page 7

MODEL-FREE: (DEEP) Q-LEARNING

• Remember the Bellman equation
𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

• Here we use the Bellman optimality equation
𝑄𝑡𝑎𝑟
𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾max

𝑎′
𝑄𝜋 𝑠′, 𝑎′]

08/02/2023 RL + some research directions Page 8

MODEL-FREE: (DEEP) Q-LEARNING

• Remember the Bellman equation
𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

• Here we use the Bellman optimality equation
𝑄𝑡𝑎𝑟
𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾max

𝑎′
𝑄𝜋 𝑠′, 𝑎′]

• Idea: Directly approximate 𝑄𝜋 using 𝑄𝑡𝑎𝑟
𝜋

08/02/2023 RL + some research directions Page 9

MODEL-FREE: (DEEP) Q-LEARNING

• Remember the Bellman equation
𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

• Here we use the Bellman optimality equation
𝑄𝑡𝑎𝑟
𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾max

𝑎′
𝑄𝜋 𝑠′, 𝑎′]

• Idea: Directly approximate 𝑄𝜋 using 𝑄𝑡𝑎𝑟
𝜋

• Objective function

𝐿(𝜃) =
1

𝑁
𝑄𝜃
𝜋 𝑠, 𝑎 − 𝑄𝑡𝑎𝑟

𝜋 𝑠, 𝑎
2

08/02/2023 RL + some research directions Page 10

EXPLORATION-EXPLOITATION IN Q-LEARNING

• Naïve Q-learning policy max
a

𝑄(𝑠, 𝑎) never explores

08/02/2023 RL + some research directions Page 11

EXPLORATION-EXPLOITATION IN Q-LEARNING

• Naïve Q-learning policy max
a

𝑄(𝑠, 𝑎) never explores

• Solution: Use 𝜖-greedy action selection

08/02/2023 RL + some research directions Page 12

EXPLORATION-EXPLOITATION IN Q-LEARNING

• Naïve Q-learning policy max
a

𝑄(𝑠, 𝑎) never explores

• Solution: Use 𝜖-greedy action selection
Select optimal action with probability 1 − 𝜖
Select random action with probability 𝜖

08/02/2023 RL + some research directions Page 13

EXPLORATION-EXPLOITATION IN Q-LEARNING

• Naïve Q-learning policy max
a

𝑄(𝑠, 𝑎) never explores

• Solution: Use 𝜖-greedy action selection
Select optimal action with probability 1 − 𝜖
Select random action with probability 𝜖

• This makes Q-Learning an off-policy algorithm

08/02/2023 RL + some research directions Page 14

EXPLORATION-EXPLOITATION IN Q-LEARNING

• Naïve Q-learning policy max
a

𝑄(𝑠, 𝑎) never explores

• Solution: Use 𝜖-greedy action selection
Select optimal action with probability 1 − 𝜖
Select random action with probability 𝜖

• This makes Q-Learning an off-policy algorithm

• Data comes from 𝜖-greedy policy
But we’re learning the greedy policy 𝑄𝑡𝑎𝑟

𝜋 𝑠, 𝑎 = 𝔼𝜋[𝑟𝑡+1 + 𝛾max
𝑎′

𝑄𝜋 𝑠′, 𝑎′]

08/02/2023 RL + some research directions Page 15

MODEL-FREE: POLICY GRADIENT (INTUITION)

08/02/2023 RL + some research directions Page 16Sources: Berkeley RL (2022)

MODEL-FREE: POLICY GRADIENT

• RL goal: Find policy that maximizes reward

08/02/2023 RL + some research directions Page 17

MODEL-FREE: POLICY GRADIENT

• RL goal: Find policy that maximizes reward

• Why can’t we do gradient descent on the objective?

08/02/2023 RL + some research directions Page 18

MODEL-FREE: POLICY GRADIENT

• RL goal: Find policy that maximizes reward

• Why can’t we do gradient descent on the objective?

• Because 𝑅 is non-differentiable!

08/02/2023 RL + some research directions Page 19

MODEL-FREE: POLICY GRADIENT

• RL goal: Find policy that maximizes reward

• Why can’t we do gradient descent on the objective?

• Because 𝑅 is non-differentiable!

• Solution 1: Use the likelihood-ratio estimator

08/02/2023 RL + some research directions Page 20

MODEL-FREE: POLICY GRADIENT

• RL goal: Find policy that maximizes reward

• Why can’t we do gradient descent on the objective?

• Because 𝑅 is non-differentiable!

• Solution 1: Use the likelihood-ratio estimator

• Solution 2: Approximate expectation with MC

08/02/2023 RL + some research directions Page 21

MODEL-FREE: ACTOR-CRITIC
• Policy gradient works, but there are some problems

08/02/2023 RL + some research directions Page 22

MODEL-FREE: ACTOR-CRITIC
• Policy gradient works, but there are some problems

08/02/2023 RL + some research directions Page 23

Unbiased, but high variance
Does not capture relative quality of action

MODEL-FREE: ACTOR-CRITIC
• Policy gradient works, but there are some problems

• Solution 1: Combine Policy Gradient with TD Learning

∇ 𝜃𝐽 𝜋𝜃 = 𝔼𝜏∼𝜋𝜃 ෍

𝑡=0

𝑇

𝑄𝜋 𝑠𝑡, 𝑎𝑡 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡

08/02/2023 RL + some research directions Page 24

Unbiased, but high variance
Does not capture relative quality of action

MODEL-FREE: ACTOR-CRITIC
• Policy gradient works, but there are some problems

• Solution 1: Combine Policy Gradient with TD Learning

∇ 𝜃𝐽 𝜋𝜃 = 𝔼𝜏∼𝜋𝜃 ෍

𝑡=0

𝑇

𝑄𝜋 𝑠𝑡, 𝑎𝑡 ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡

• Solution 2: Subtract a state-dependent baseline

∇ 𝜃𝐽 𝜋𝜃 = 𝔼𝜏∼𝜋𝜃 ෍

𝑡=0

𝑇

(𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)) ∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡

08/02/2023 RL + some research directions Page 25

Unbiased, but high variance
Does not capture relative quality of action

MODEL-FREE: THE ADVANTAGE FUNCTION

• The previous slide used a quantity called advantage function
A𝜋 st, at = 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)

08/02/2023 RL + some research directions Page 26

MODEL-FREE: THE ADVANTAGE FUNCTION

• The previous slide used a quantity called advantage function
A𝜋 st, at = 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)

• Must estimate two functions 𝑄𝜋 and 𝑉𝜋

►Error prone and expensive

08/02/2023 RL + some research directions Page 27

MODEL-FREE: THE ADVANTAGE FUNCTION

• The previous slide used a quantity called advantage function
A𝜋 st, at = 𝑄𝜋 𝑠𝑡 , 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)

• Must estimate two functions 𝑄𝜋 and 𝑉𝜋

►Error prone and expensive

• Can we do better?

08/02/2023 RL + some research directions Page 28

MODEL-FREE: THE ADVANTAGE FUNCTION

• The previous slide used a quantity called advantage function
A𝜋 st, at = 𝑄𝜋 𝑠𝑡, 𝑎𝑡 − 𝑉𝜋(𝑠𝑡)

• Must estimate two functions 𝑄𝜋 and 𝑉𝜋

►Error prone and expensive

• Can we do better?

• YES! Estimate advantage using only 𝑉𝜋

𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼𝜋 𝑟𝑡+1 + 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1
𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼𝜋 𝑟𝑡+1 + 𝔼𝜋 𝛾𝑄𝜋 𝑠𝑡+1, 𝑎𝑡+1
𝑄𝜋 𝑠𝑡, 𝑎𝑡 = 𝔼𝜋 𝑟𝑡+1 + 𝛾𝑉𝜋 𝑠𝑡+1
A𝜋 st, at ≈ 𝑟𝑡+1 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡)

08/02/2023 RL + some research directions Page 29

CONCLUSION

• RL ports dynamic programming to large problems with sampling

• Deep RL approximates quantities with NNs

• There is model-free and model-based RL

• Three families of model-free deep RL algorithms

• Most strong current algorithms (PPO, SAC, TD3) are Actor-Critic algorithms

08/02/2023 RL + some research directions Page 30

Name Type Approximated functions Data used Action space

Q-Learning Value-based 𝑄(𝑠, 𝑎) Off-policy Discrete

Policy gradient/REINFORCE Policy-based 𝜋(𝑎 ∣ 𝑠) On-policy Continuous + Discrete

Actor-Critic Combined Combinations of 𝑄, 𝜋, 𝑉 Depends Continuous + Discrete

REFERENCES

• Sutton & Barto book (2018)

• Foundations of deep Reinforcement Learning
Theory and Practice in python

• Berkeley CS 285 (Policy Gradient image)

08/02/2023 RL + some research directions Page 31

	Slide 1: Reinforcement Learning
	Slide 2: Agent-Environment Framework
	Slide 3: Markov Decision Process (MDP)
	Slide 4: Notation & Terms
	Slide 5: Notation & Terms
	Slide 6: Model-Free vs Model-based
	Slide 7: Model-Free: (Deep) Q-learning
	Slide 8: Model-Free: (Deep) Q-learning
	Slide 9: Model-Free: (Deep) Q-learning
	Slide 10: Model-Free: (Deep) Q-learning
	Slide 11: Exploration-Exploitation in Q-Learning
	Slide 12: Exploration-Exploitation in Q-Learning
	Slide 13: Exploration-Exploitation in Q-Learning
	Slide 14: Exploration-Exploitation in Q-Learning
	Slide 15: Exploration-Exploitation in Q-Learning
	Slide 16: Model-Free: Policy Gradient (Intuition)
	Slide 17: Model-Free: Policy Gradient
	Slide 18: Model-Free: Policy Gradient
	Slide 19: Model-Free: Policy Gradient
	Slide 20: Model-Free: Policy Gradient
	Slide 21: Model-Free: Policy Gradient
	Slide 22: Model-free: Actor-Critic
	Slide 23: Model-free: Actor-Critic
	Slide 24: Model-free: Actor-Critic
	Slide 25: Model-free: Actor-Critic
	Slide 26: Model-Free: The Advantage Function
	Slide 27: Model-Free: The Advantage Function
	Slide 28: Model-Free: The Advantage Function
	Slide 29: Model-Free: The Advantage Function
	Slide 30: Conclusion
	Slide 31: References

