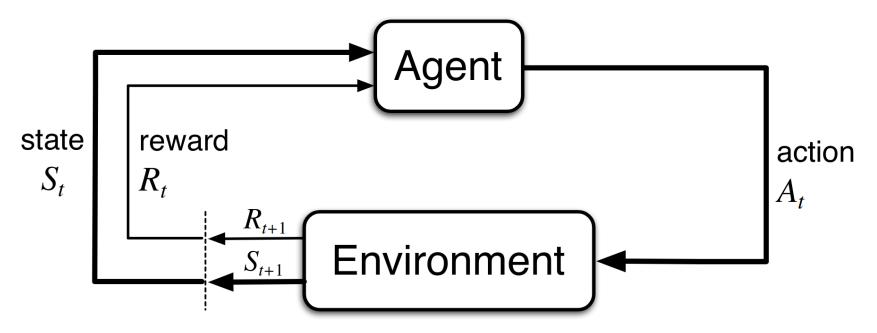


REINFORCEMENT LEARNING

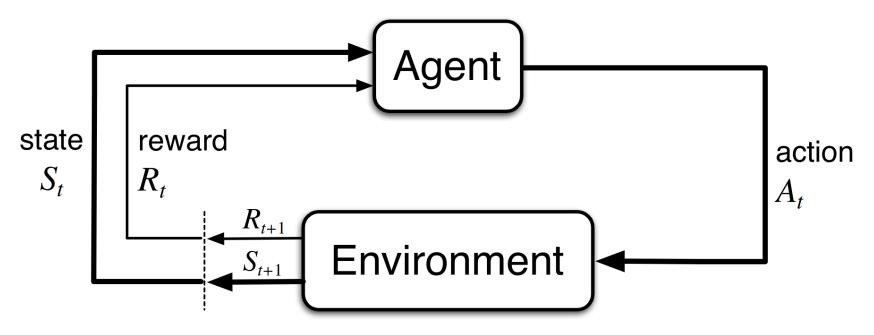
Timo Klein | 11.01.2023

AGENT-ENVIRONMENT FRAMEWORK



- Agent selects action a_t based on state s_t
- Observes **next state** s_{t+1} and **reward** r_{t+1}

MARKOV DECISION PROCESS (MDP)



• Formally: 5-tuple $\mathcal{M}=\langle S, \mathcal{A}, P, R, \gamma \rangle$.

• Goal: max $\mathbb{E}_{\pi}[\sum_{t=1}^{T} \gamma^{t} r(s_{t}, a_{t})]$ by finding an optimal policy π^{\star} .

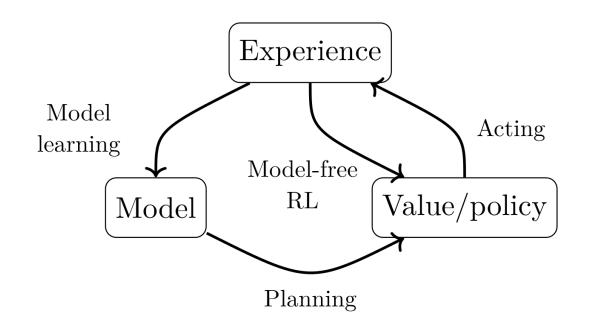
NOTATION & TERMS

Name	Notation		
Transition function	$s' \sim P(s' \mid s, a)$		
Reward function	$r \sim R(s, a)$		
Policy	$a \sim \pi(a \mid s)$		
Value function	$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r_{t} \mid s_{0} = s, \pi\right]$		
Q-function (Action-Value function)	$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r_{t} \mid s_{0} = s, a_{0} = a, \pi\right]$		
Bellman equation	$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_t = s, a_t = a]$		

NOTATION & TERMS

Name	Notation	
Transition function	$s' \sim P(s' \mid s, a)$	
Reward function	$r \sim R(s, a)$	
Policy	$a \sim \pi(a \mid s)$	
Value function	$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r_{t} \mid s_{0} = s, \pi\right]$	Use NNs for this deep RL
Q-function (Action-Value function)	$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} r_{t} \mid s_{0} = s, a_{0} = a, \pi\right]$	
Bellman equation	$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_t = s, a_t = a]$	

MODEL-FREE VS MODEL-BASED



• Model-free RL

Estimate directly π , $Q^{\pi}(s, a)$ from samples

Model-based RL

1. Try to estimate $\hat{P}(s' \mid s, a)$ (and) $\hat{R}(s, a)$ 2. Use these to train π , $Q^{\pi}(s, a)$

• Remember the Bellman equation

 $Q^{\pi}(s,a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_t = s, a_t = a]$

• Remember the Bellman equation

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_t = s, a_t = a]$$

• Here we use the Bellman *optimality* equation

$$Q_{tar}^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma \max_{a'} Q^{\pi}(s', a')]$$

• Remember the Bellman equation

 $Q^{\pi}(s,a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_t = s, a_t = a]$

- Here we use the Bellman *optimality* equation $Q_{tar}^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma \max_{a'} Q^{\pi}(s', a')]$
- Idea: Directly approximate Q^{π} using Q_{tar}^{π}

• Remember the Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_t = s, a_t = a]$$

- Here we use the Bellman *optimality* equation $Q_{tar}^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma \max_{a'} Q^{\pi}(s', a')]$
- Idea: Directly approximate Q^{π} using Q_{tar}^{π}
- Objective function

$$L(\theta) = \frac{1}{N} \left(Q_{\theta}^{\pi} \left(s, a \right) - Q_{tar}^{\pi} \left(s, a \right) \right)^{2}$$

• Naïve Q-learning policy $\max_{a} Q(s, a)$ never explores

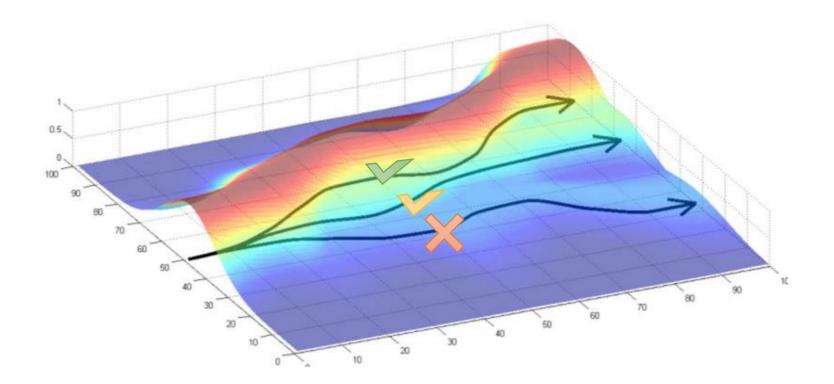
- Naïve Q-learning policy $\max_{a} Q(s, a)$ never explores
- Solution: Use ϵ -greedy action selection

- Naïve Q-learning policy $\max_{a} Q(s, a)$ never explores
- Solution: Use ϵ -greedy action selection Select optimal action with probability $1 - \epsilon$ Select random action with probability ϵ

- Naïve Q-learning policy $\max_{a} Q(s, a)$ never explores
- Solution: Use ϵ -greedy action selection Select optimal action with probability $1 - \epsilon$ Select random action with probability ϵ
- This makes Q-Learning an *off-policy* algorithm

- Naïve Q-learning policy $\max_{a} Q(s, a)$ never explores
- Solution: Use ϵ -greedy action selection Select optimal action with probability $1 - \epsilon$ Select random action with probability ϵ
- This makes Q-Learning an *off-policy* algorithm
- Data comes from ϵ -greedy policy But we're learning the greedy policy $Q_{tar}^{\pi}(s, a) = \mathbb{E}_{\pi}[r_{t+1} + \gamma \max_{a'} Q^{\pi}(s', a')]$

MODEL-FREE: POLICY GRADIENT (INTUITION)



• RL goal: Find policy that maximizes reward

$$\max_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$$

- RL goal: Find policy that maximizes reward $\max_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$
- Why can't we do gradient descent on the objective? $\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$

- RL goal: Find policy that maximizes reward $\max_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$
- Why can't we do gradient descent on the objective? $\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$
- Because *R* is non-differentiable!

- RL goal: Find policy that maximizes reward $\max_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$
- Why can't we do gradient descent on the objective? $\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$
- Because *R* is non-differentiable!
- Solution 1: Use the likelihood-ratio estimator

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} R_t(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \right]$$

- RL goal: Find policy that maximizes reward $\max_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$
- Why can't we do gradient descent on the objective? $\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$
- Because *R* is non-differentiable!
- Solution 1: Use the likelihood-ratio estimator

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} R_t(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \right]$$
$$\nabla_{\theta} J(\pi_{\theta}) \approx \sum_{t=0}^{T} R_t(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)$$

• Solution 2: Approximate expectation with MC

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} R_t(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \right]$$

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} R_{t}(\tau) \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \right]$$
Unbiased, but high variance
Does not capture relative quality of action

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} R_{t}(\tau) \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \right]$$
Unbiased, but high variance
Does not capture relative quality of action
• Solution 1: Combine Policy Gradient with TD Learning
$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} Q^{\pi}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \right]$$

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} R_{t}(\tau) \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \right]$$
Unbiased, but high variance
Does not capture relative quality of action
• Solution 1: Combine Policy Gradient with TD Learning

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} Q^{\pi}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \right]$$
• Solution 2: Subtract a_state-dependent baseline

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} (Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \right]$$

• The previous slide used a quantity called advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$

- The previous slide used a quantity called advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$
- Must estimate two functions Q^π and V^π
 ▶ Error prone and expensive

- The previous slide used a quantity called advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$
- Must estimate two functions Q^π and V^π
 ▶ Error prone and expensive
- Can we do better?

- The previous slide used a quantity called advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$
- Must estimate two functions Q^π and V^π
 ▶ Error prone and expensive
- Can we do better?
- YES! Estimate advantage using only V^{π}

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{\pi}[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1})]$$

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{\pi}[r_{t+1}] + \mathbb{E}_{\pi}[\gamma Q^{\pi}(s_{t+1}, a_{t+1})]$$

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}_{\pi}[r_{t+1}] + \gamma V^{\pi}(s_{t+1})$$

$$A^{\pi}(s_{t}, a_{t}) \approx r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_{t})$$

CONCLUSION

- RL ports dynamic programming to large problems with sampling
- Deep RL approximates quantities with NNs
- There is model-free and model-based RL
- Three families of model-free deep RL algorithms

Name	Туре	Approximated functions	Data used	Action space
Q-Learning	Value-based	Q(s,a)	Off-policy	Discrete
Policy gradient/REINFORCE	Policy-based	$\pi(a \mid s)$	On-policy	Continuous + Discrete
Actor-Critic	Combined	Combinations of Q , π , V	Depends	Continuous + Discrete

• Most strong current algorithms (PPO, SAC, TD3) are Actor-Critic algorithms

REFERENCES

- Sutton & Barto book (2018)
- Foundations of deep Reinforcement Learning Theory and Practice in python
- Berkeley CS 285 (Policy Gradient image)