

CC(=0)OC1=CC=C1C(=0)O

Drug Discovery using Machine Learning

Drug discovery pipeline in a nutshell

Machine learning has the potential to optimize and improve the screening stage to **reduce time & cost** and **increase success rate** in the clinical phase.

Credits: https://www.researchgate.net/publication/308045230_Omics-Informed_Drug_and_Biomarker_Discovery_Opportunities_Challenges_and __Future_Perspectives/figures?lo=1

Case study: KRAS G12C

Goal: Design a compound that is effectively interacting with the KRAS protein.

Development pipeline from Amgen:

- 1. Screen experimentally a 300k compound library
- 2. Two hits (potent) compounds were identified
- Optimize lead compound by decreasing IC50 (affinity)

The 3D structure contains information about residue interactions contributing to the affinity.

0.903

9.15

1.55

0.683

0.101

2.58

8.05

7.15

1.80

0.335

EquiBind – Predicting the 3D protein-ligand complex

Efficient change of torsion angles of rotatable bonds to fit the initial conformer into Z. **Overview:** Independent SE(3)-Ligand: random equivariant GMNs 1. Compute cheap initial 3D **RDKit conformer** Ligand graph . keypoints $\mathbf{X} \in \mathbb{R}^{3 \times n}$ \mathbf{h}_2 $\mathbf{Z} \in \mathbb{R}^{3 \times n}$ $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ conformation of the $K \in \mathbb{R}^{3 \times K}$ (transformed (coordinate Multi-head compound SE(3)coordinates) $\mathbf{F} \in \mathbb{R}^{d \times n}$ equivariant $\mathbf{H} \in \mathbb{R}^{d \times n}$ Embed protein & (features) attention (feature SE(3) docking embeddings) transformation Receptor compound **Final complex** $\mathbf{X}' \in \mathbb{R}^{3 \times m}$ h₁ Predict rotation & $\mathbf{F}' \in \mathbb{R}^{d \times m}$ Multi-head $\in \mathbb{R}^{3 \times m}$ R keypoints $\mathbf{Y}' \in \mathbb{R}^{3 \times K}$ SE(3)-Recepto transformation of the graph g $\mathbf{H}' \in \mathbb{R}^{d \times n}$ equivariant attention $\Psi(\cdot)$ compound Local structure d_i and ring aeometric constraints

Assumption: Fixed protein structure

2.

3.

Equivariant Graph Neural Network

Input:

- <u>Compound</u> graph $(\mathcal{V}, \mathcal{E})$ with $X \in \mathbb{R}^{3 \times n}$ coordinates and $\mathbf{H} \in \mathbb{R}^{d \times n}$ features
- <u>Receptor</u> graph $(\mathcal{V}', \mathcal{E}')$ with $X' \in \mathbb{R}^{3 \times m}$ coordinates and $H' \in \mathbb{R}^{d \times m}$ features

Notation:

- $\varphi^{e, h}$ feed-forward NN with *d*dimensional output & φ^{x} feed-forward NN with scalar output
- a_{\rightarrow} . attention coefficient
- f_{\dots} edge features, e.g. bond type

Single Layer (IEGMN):

 $\mathbf{m}_{j \to i} = \varphi^e(\mathbf{h}_i^{(l)}, \mathbf{h}_i^{(l)}, \|\mathbf{x}_i^{(l)} - \mathbf{x}_i^{(l)}\|^2, \mathbf{f}_{j \to i}), \forall (i, j) \in \mathcal{E} \cup \mathcal{E}'$ Compute 1. edge $\mu_{j' \to i} = a_{j' \to i} \mathbf{W} \mathbf{h}_{j'}^{(l)}, \forall i \in \mathcal{V}, j' \in \mathcal{V}' \text{ or } i \in \mathcal{V}', j' \in \mathcal{V}$ feature $\mathbf{m}_i = rac{\mathbf{I}}{|\mathcal{N}(i)|} \sum_{i \in \mathcal{N}(i)} \mathbf{m}_{j
ightarrow i}, orall i \in \mathcal{V} \cup \mathcal{V}'$ 2. Aggregate $\mu_i = \sum_{j' \in \mathcal{V}'} \mu_{j' \to i}, \forall i \in \mathcal{V}, \quad \text{and} \quad \mu'_i = \sum_{i \in \mathcal{V}} \mu_{j \to i'}, \forall i \in \mathcal{V}'$ over nodes $\mathbf{x}_{i}^{(l+1)} = \Psi\left(\mathbf{x}_{i}^{(l)} + \sum_{i \in \mathcal{N}(i)} \frac{\mathbf{x}_{i}^{(l)} - \mathbf{x}_{j}^{(l)}}{\|\mathbf{x}_{i}^{(l)} - \mathbf{x}_{i}^{(l)}\|} \varphi^{x}(\mathbf{m}_{j \to i})\right)$ Update node $\mathbf{h}_{i}^{(l+1)} = (1-\beta) \cdot \mathbf{h}_{i}^{(l)} + \beta \cdot \varphi^{h}(\mathbf{h}_{i}^{(l)}, \mathbf{m}_{i}, \mu_{i}, \mathbf{f}_{i}), \forall i \in \mathcal{V} \cup \mathcal{V}'$ features

Enforcing a chemical plausible geometry

Motivation: Local atom structures (e.g. bond length & adjacent bond angels) are mostly rigid.

Minimize the loss S for a chemical plausible conformer C to enforce LAS

$$\begin{split} \mathcal{S}(X,C) &= \sum_{(i,j)\in\mathcal{E}} (d_C^2(i,j) - d_X^2(i,j))^2 \\ &+ \sum_{(i,j): \ 2\text{-hops away in } \mathcal{G}} (d_C^2(i,j) - d_X^2(i,j))^2 \\ &+ \sum_{(i,j): \ i \ \text{in aromatic ring with } j} (d_C^2(i,j) - d_X^2(i,j))^2 \end{split}$$

with gradient descent

 $\Psi(X) = \Psi_T \circ \cdots \circ \Psi_1(X), \quad \Psi_t(X) = X - \eta \nabla_X \mathcal{S}(X, C), \forall t$

Kabsch algorithm: Finding the right rotation and translation

- 1. Identify *K* keypoints for receptor and compound: $Y' \in \mathbb{R}^{K \times 3} \& Y \in \mathbb{R}^{K \times 3}$ with $y_k = \sum_{i=1}^n \alpha_i^k x_i^L$
- 2. Compute rotation and translation (Kabsch algorithm)

3. MSE loss:
$$\tilde{X} = RX + t$$
 $\Rightarrow \mathcal{L}_{MSE} = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i}^{*} - \tilde{\mathbf{x}}_{i}\|^{2}$

4. Enforce the keypoints to be binding pocket points of the compound and receptor with **optimal transport loss**

$$\mathcal{L}_{\mathrm{OT}} = \min_{\mathbf{T} \in \mathcal{U}(S,K)} \langle \mathbf{T}, \mathbf{C} \rangle, \quad ext{where } \mathbf{C}_{s,k} = \|\mathbf{y}_{1k} - \mathbf{p}_{1s}\|^2 + \|\mathbf{y}_{2k} - \mathbf{p}_{2s}\|^2,$$

Kabsch algorithm:

1.
$$A = Y'Y^T \in \mathbb{R}^{3 \times 3}$$

2. SVD: $A = U_2SU_1^T$
3. Rotation: $\mathbb{R} = U_2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & d \end{pmatrix} U_1^T$, where $d = \operatorname{sign}(\det(U_2U_1^T))$
4. Translation: $t = \mu(Y') - R\mu(Y)$
Reference: S. Umeyama, "Least-squares estimation of transformation parameters between two point patterns", 1991

Results & What is missing?

Results:

- EquiBind is significantly faster
- Combining it with finetuning method helps a lot (EquiBind + S)
- Low percentage of RMSD below 2A (bad ☺)

			LIGAND RMSD \downarrow						Centroid Distance \downarrow						KABSCH	
	AVG. SEC.	AVG. SEC.	Percentiles \downarrow			% BELOW THRESHOLD↑		Percentiles \downarrow				% BELOW THRESH. ↑		$RMSD\downarrow$		
METHODS	16-CPU	GPU	MEAN	25тн	50тн	75тн	5 Å	2 Å	MEAN	25тн	50тн	75тн	5 Å	2 Å	Mean	Med.
QVINA-W	49	-	13.6	2.5	7.7	23.7	40.2	20.9	11.9	0.9	3.7	22.9	54.6	41.0	2.1	1.9
GNINA	247	146	13.3	2.8	8.7	22.1	37.1	21.2	11.5	1.0	4.5	21.2	52.0	36.0	2.2	1.8
SMINA	146	-	12.1	3.8	8.1	17.9	33.9	13.5	9.8	1.3	3.7	16.2	55.9	38.0	2.2	1.9
GLIDE (C.)	1405*	-	16.2	2.6	9.3	28.1	33.6	21.8	14.4	0.8	5.6	26.9	48.7	36.1	2.2	1.9
EQUIBIND	0.16	0.04	8.2	3.8	6.2	10.3	39.1	5.5	5.6	1.3	2.6	7.4	67.5	40.0	2.6	2.3
EQUIBIND+Q	8	8	8.4	2.6	6.6	11.1	38.0	18.7	5.9	1.0	2.5	6.4	68.7	44.6	2.3	1.9
EQUIBIND+Q2	15	15	8.7	2.6	6.8	11.1	40.7	21.6	6.0	1.0	2.4	6.6	70.1	42.7	2.2	1.6
EQUIBIND+S	146	146	8.3	2.1	5.6	10.5	46.4	24.6	6.0	0.9	2.0	6.2	71.0	50.6	2.1	1.8
EQUIBIND-U	0.14	0.02	7.8	3.3	5.7	9.7	42.4	7.2	5.6	1.3	2.6	7.4	67.5	40.0	2.1	1.8

What is missing?

- Binding affinity (IC50)
- Protein is not always rigid

Change of protein pocket due to different compound

Backup

Can we trust the initial conformer?

Figure 5: Histogram of the errors in 15000 predicted bond lengths and angles from randomly sampled molecules in GEOM-DRUGS and GEOM-QM9.

Credits: https://arxiv.org/pdf/2206.01729.pdf