
Diffusion models

SDE-based perspectives

Julius Berner

October 12, 2022

University of Vienna



Introduction



Sampling from high-dimensional distributions

Task

Sample from a high-dimensional distribution Y0.

Y0 can be given in the form of:

1. samples Y
(i)
0 ∼ Y0 (images, text,

sound, ...).

https://en.m.wikipedia.org/wiki/File:Cat_poster_1.jpg

2. an (unnormalized) density ρ with

pY0
= ρ/Z (e.g., in Bayesian statistics,

computational physics and chemistry).

https://en.wikipedia.org/wiki/File:Bimodal-bivariate-small.png

1

 https://en.m.wikipedia.org/wiki/File:Cat_poster_1.jpg
 https://en.wikipedia.org/wiki/File:Bimodal-bivariate-small.png


Sampling from high-dimensional distributions

Task

Sample from a high-dimensional distribution Y0.

Y0 can be given in the form of:

1. samples Y
(i)
0 ∼ Y0 (images, text,

sound, ...).

https://en.m.wikipedia.org/wiki/File:Cat_poster_1.jpg

2. an (unnormalized) density ρ with

pY0
= ρ/Z (e.g., in Bayesian statistics,

computational physics and chemistry).

https://en.wikipedia.org/wiki/File:Bimodal-bivariate-small.png

1

 https://en.m.wikipedia.org/wiki/File:Cat_poster_1.jpg
 https://en.wikipedia.org/wiki/File:Bimodal-bivariate-small.png


Overview of generative models

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

History: The development of diffusion models builds upon (denoising) diffusion

probabilistic modeling [Sohl-Dickstein et al., 2015, Ho et al., 2020] and score matching

with Langevin dynamics [Song and Ermon, 2019].

2

 https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Diffusion models

State-of-the art in generative modeling and likelihood estimation of high-dimensional

image data [Nichol and Dhariwal, 2021, Kingma et al., 2021].

Figure 1: Sampling conditioned on the text prompt “a photograph of an astronaut riding a horse”

using the stable diffusion model [Rombach et al., 2021].

3



Diffusion models

State-of-the art in generative modeling and likelihood estimation of high-dimensional

image data [Nichol and Dhariwal, 2021, Kingma et al., 2021].

Figure 1: Sampling conditioned on the text prompt “a photograph of an astronaut riding a horse”

using the stable diffusion model [Rombach et al., 2021].

3



Engineering Perspective



Diffusion process

Diffusion process Yt : Gradually add coordinate-wise Gaussian noise, i.e., conditioned on

d-dimensional data Y0, we have that

Yt = αtY0 + βtN, N ∼ N (0, I), t ∈ [0,T ].

[Nichol and Dhariwal, 2021]

Typical noise schedules for αt and βt =
√

1− α2
t :

[Nichol and Dhariwal, 2021]

4



Diffusion process

Diffusion process Yt : Gradually add coordinate-wise Gaussian noise, i.e., conditioned on

d-dimensional data Y0, we have that

Yt = αtY0 + βtN, N ∼ N (0, I), t ∈ [0,T ].

[Nichol and Dhariwal, 2021]

Typical noise schedules for αt and βt =
√

1− α2
t :

[Nichol and Dhariwal, 2021] 4



Training

Noise prediction objective (with batch-size n):

L(θ) =
n∑

i=1

∥∥∥N(i) − Φθ(Y
(i)
t , t(i))

∥∥∥2,
where Φθ is typically a U-Net (with sinusoidal positional embeddings for t) and

• Y
(i)
t = αt(i)Y

(i)
0 + βt(i)N

(i) (noisy image)

• N(i) ∼ N (0, I) (standardized noise)

• t(i) ∼ U([0,T ]) (time)

• Y (i) ∼ Y0 (data)

are i.i.d. samples.

This is a reparametrization of a denoising objective, which works better in practice.

After training, we can approximately denoise Yt as follows:

Y0 ≈
Yt − βtΦθ(Yt , t)

αt
.

5



Training

Noise prediction objective (with batch-size n):

L(θ) =
n∑

i=1

∥∥∥N(i) − Φθ(Y
(i)
t , t(i))

∥∥∥2,
where Φθ is typically a U-Net (with sinusoidal positional embeddings for t) and

• Y
(i)
t = αt(i)Y

(i)
0 + βt(i)N

(i) (noisy image)

• N(i) ∼ N (0, I) (standardized noise)

• t(i) ∼ U([0,T ]) (time)

• Y (i) ∼ Y0 (data)

are i.i.d. samples.

This is a reparametrization of a denoising objective, which works better in practice.

After training, we can approximately denoise Yt as follows:

Y0 ≈
Yt − βtΦθ(Yt , t)

αt
.

5



Architecture of typical U-Nets

https://www.assemblyai.com/blog/how-imagen-actually-works/

6

 https://www.assemblyai.com/blog/how-imagen-actually-works/


Architecture of typical U-Nets

https://www.assemblyai.com/blog/how-imagen-actually-works/
6

 https://www.assemblyai.com/blog/how-imagen-actually-works/


Sampling

Bayes’ theorem yields the following formula for Ys (conditioned on Y0 and Yt with s < t):

Ys = Θt,s(Y0,Yt ,N), N ∼ N (0, I),

where

Θt,s(Y0,Yt ,N) =
β2
s αt

β2
t αs

Yt +

(
αs −

α2
tβ

2
s

αsβ2
t

)
Y0︸ ︷︷ ︸

mean

+

√
β2
s −

α2
tβ

4
s

α2
sβ

2
t︸ ︷︷ ︸

standard deviation

N.

Idea: Use the NN prediction for Y0 and perform ancestral sampling.

1. Sample XT ∼ N (0, I) (approximately distributed as YT ).

2. Iterate:

Xt−1 := Θt,t−1

(
Xt − βtΦθ(Xt , t)

αt︸ ︷︷ ︸
denoising

,Xt ,N
(t)

)

with i.i.d. N(t) ∼ N (0, I).

3. Output X0 (approximately distributed as the data Y0).

[Ho et al., 2020]

This can be viewed as variational

auto-encoder with fixed encoder.

7



Sampling

Bayes’ theorem yields the following formula for Ys (conditioned on Y0 and Yt with s < t):

Ys = Θt,s(Y0,Yt ,N), N ∼ N (0, I),

where

Θt,s(Y0,Yt ,N) =
β2
s αt

β2
t αs

Yt +

(
αs −

α2
tβ

2
s

αsβ2
t

)
Y0︸ ︷︷ ︸

mean

+

√
β2
s −

α2
tβ

4
s

α2
sβ

2
t︸ ︷︷ ︸

standard deviation

N.

Idea: Use the NN prediction for Y0 and perform ancestral sampling.

1. Sample XT ∼ N (0, I) (approximately distributed as YT ).

2. Iterate:

Xt−1 := Θt,t−1

(
Xt − βtΦθ(Xt , t)

αt︸ ︷︷ ︸
denoising

,Xt ,N
(t)

)

with i.i.d. N(t) ∼ N (0, I).

3. Output X0 (approximately distributed as the data Y0).

[Ho et al., 2020]

This can be viewed as variational

auto-encoder with fixed encoder.

7



Sampling

Bayes’ theorem yields the following formula for Ys (conditioned on Y0 and Yt with s < t):

Ys = Θt,s(Y0,Yt ,N), N ∼ N (0, I),

where

Θt,s(Y0,Yt ,N) =
β2
s αt

β2
t αs

Yt +

(
αs −

α2
tβ

2
s

αsβ2
t

)
Y0︸ ︷︷ ︸

mean

+

√
β2
s −

α2
tβ

4
s

α2
sβ

2
t︸ ︷︷ ︸

standard deviation

N.

Idea: Use the NN prediction for Y0 and perform ancestral sampling.

1. Sample XT ∼ N (0, I) (approximately distributed as YT ).

2. Iterate:

Xt−1 := Θt,t−1

(
Xt − βtΦθ(Xt , t)

αt︸ ︷︷ ︸
denoising

,Xt ,N
(t)

)

with i.i.d. N(t) ∼ N (0, I).

3. Output X0 (approximately distributed as the data Y0).

[Ho et al., 2020]

This can be viewed as variational

auto-encoder with fixed encoder.

7



Stable diffusion model

Use diffusion in latent space of a pre-trained (regularized) auto-encoder and condition the

U-Net on features given by a pre-trained domain-specific encoder (e.g., a transformer for

text prompts):

[Rombach et al., 2021]

8



SDE-based perspective



Stochastic differential equations (SDEs)

Consider solutions Y to SDEs of the form

dYs = µ(Ys)︸ ︷︷ ︸
drift

ds + σ(Ys)︸ ︷︷ ︸
diffusion

dBs ,

where Bs is a d-dimensional Brownian motion.

Intuition via Euler-Maruyama scheme Ŷtk+1 ≈ Ytk :

Ŷtk+1 = Ŷtk + µ(Ŷtk )(tk+1 − tk ) + σ(Ŷtk ) (Btk+1 − Btk )︸ ︷︷ ︸
∼N (0,tk+1−tk )

.

Figure 2: SDE solution and

Euler-Maruyama scheme with

tk = kT
N and N = 4, 8.

9



Stochastic differential equations (SDEs)

Consider solutions Y to SDEs of the form

dYs = µ(Ys)︸ ︷︷ ︸
drift

ds + σ(Ys)︸ ︷︷ ︸
diffusion

dBs ,

where Bs is a d-dimensional Brownian motion.

Intuition via Euler-Maruyama scheme Ŷtk+1 ≈ Ytk :

Ŷtk+1 = Ŷtk + µ(Ŷtk )(tk+1 − tk ) + σ(Ŷtk ) (Btk+1 − Btk )︸ ︷︷ ︸
∼N (0,tk+1−tk )

.

Figure 2: SDE solution and

Euler-Maruyama scheme with

tk = kT
N and N = 4, 8.

9



Inference SDE

Consider a (time-varying) Ornstein–Uhlenbeck process

dYs = µ(s)Ysds + σ(s)dBs ,

which diffuses the data Y0.

[Song et al., 2020]

Note that, conditioned on Y0, the solution Ys is normally distributed. For the choices

µ(s) =
α′(s)

α(s)
and σ2(s) = 2β(s)β′(s)− 2

α′(s)β2(s)

α(s)

we recover pYs |Y0
(·|Y0) = N (αsY0, β

2
s I).

10



Inference SDE

Consider a (time-varying) Ornstein–Uhlenbeck process

dYs = µ(s)Ysds + σ(s)dBs ,

which diffuses the data Y0.

[Song et al., 2020]

Note that, conditioned on Y0, the solution Ys is normally distributed. For the choices

µ(s) =
α′(s)

α(s)
and σ2(s) = 2β(s)β′(s)− 2

α′(s)β2(s)

α(s)

we recover pYs |Y0
(·|Y0) = N (αsY0, β

2
s I).

10



Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]

The solutions to the SDE

dXs =
(
σσ⊤∇ log pYT−s

− µ
)
(Xs , s)ds + σ(s)dBs , X0 ∼ YT ,

and the ODE

dXs =

(
1

2
σσ⊤∇ log pYT−s

− µ

)
(Xs , s)ds, X0 ∼ YT ,

both satisfy that Xs ∼ YT−s , where pYT−s
is the density of YT−s .

� We need an approximation to the score ∇ log pYT−s
.

Using the noise prediction network Φθ, we obtain that

∇ log pYt |Y0
(Yt |Y0) =

Yt − αtY0

β2
t

≈
Φθ(Yt , t)

βt
.

Sampling:

1. Sample X0 ∼ N (0, I).

2. Plug-in the approximate score and simulate the SDE (using Euler-Maruyama) or the

ODE (analogous to time-continuous normalizing flows) to obtain samples XT .

Having access to samples from Y0, one can use the denoising score matching objective

min
θ
E

[∥∥Φθ(Yτ , τ)−∇ log pYτ |Y0
(Yτ |Y0)

∥∥2] , τ ∈ Unif([0,T ]),

to learn the score Φθ(·, s) ≈ ∇ log pYs .

11



Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]

The solutions to the SDE

dXs =
(
σσ⊤∇ log pYT−s

− µ
)
(Xs , s)ds + σ(s)dBs , X0 ∼ YT ,

and the ODE

dXs =

(
1

2
σσ⊤∇ log pYT−s

− µ

)
(Xs , s)ds, X0 ∼ YT ,

both satisfy that Xs ∼ YT−s , where pYT−s
is the density of YT−s .

� We need an approximation to the score ∇ log pYT−s
.

Using the noise prediction network Φθ, we obtain that

∇ log pYt |Y0
(Yt |Y0) =

Yt − αtY0

β2
t

≈
Φθ(Yt , t)

βt
.

Sampling:

1. Sample X0 ∼ N (0, I).

2. Plug-in the approximate score and simulate the SDE (using Euler-Maruyama) or the

ODE (analogous to time-continuous normalizing flows) to obtain samples XT .

Having access to samples from Y0, one can use the denoising score matching objective

min
θ
E

[∥∥Φθ(Yτ , τ)−∇ log pYτ |Y0
(Yτ |Y0)

∥∥2] , τ ∈ Unif([0,T ]),

to learn the score Φθ(·, s) ≈ ∇ log pYs .

11



Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]

The solutions to the SDE

dXs =
(
σσ⊤∇ log pYT−s

− µ
)
(Xs , s)ds + σ(s)dBs , X0 ∼ YT ,

and the ODE

dXs =

(
1

2
σσ⊤∇ log pYT−s

− µ

)
(Xs , s)ds, X0 ∼ YT ,

both satisfy that Xs ∼ YT−s , where pYT−s
is the density of YT−s .

� We need an approximation to the score ∇ log pYT−s
.

Using the noise prediction network Φθ, we obtain that

∇ log pYt |Y0
(Yt |Y0) =

Yt − αtY0

β2
t

≈
Φθ(Yt , t)

βt
.

Sampling:

1. Sample X0 ∼ N (0, I).

2. Plug-in the approximate score and simulate the SDE (using Euler-Maruyama) or the

ODE (analogous to time-continuous normalizing flows) to obtain samples XT .

Having access to samples from Y0, one can use the denoising score matching objective

min
θ
E

[∥∥Φθ(Yτ , τ)−∇ log pYτ |Y0
(Yτ |Y0)

∥∥2] , τ ∈ Unif([0,T ]),

to learn the score Φθ(·, s) ≈ ∇ log pYs .

11



Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]

The solutions to the SDE

dXs =
(
σσ⊤∇ log pYT−s

− µ
)
(Xs , s)ds + σ(s)dBs , X0 ∼ YT ,

and the ODE

dXs =

(
1

2
σσ⊤∇ log pYT−s

− µ

)
(Xs , s)ds, X0 ∼ YT ,

both satisfy that Xs ∼ YT−s , where pYT−s
is the density of YT−s .

� We need an approximation to the score ∇ log pYT−s
.

Using the noise prediction network Φθ, we obtain that

∇ log pYt |Y0
(Yt |Y0) =

Yt − αtY0

β2
t

≈
Φθ(Yt , t)

βt
.

Sampling:

1. Sample X0 ∼ N (0, I).

2. Plug-in the approximate score and simulate the SDE (using Euler-Maruyama) or the

ODE (analogous to time-continuous normalizing flows) to obtain samples XT .

Having access to samples from Y0, one can use the denoising score matching objective

min
θ
E

[∥∥Φθ(Yτ , τ)−∇ log pYτ |Y0
(Yτ |Y0)

∥∥2] , τ ∈ Unif([0,T ]),

to learn the score Φθ(·, s) ≈ ∇ log pYs .

11



Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction

objective also provides a lower bound on the log-likelihood E
[
log pXθ

T
(Y0)

]
of our

model X θ (with score replaced by the NN approximation).

Proof idea with short-hands ⃗f (t) := f (T − t), D = 1
2
σσ⊤, and X = X θ:

1. Fokker-Planck for pX :

∂tpX = div
(
div
(

⃗DpX
)
− ⃗µpX

)
2. Kolmogorov backwards equation for ⃗pX :

∂t ⃗pX = − tr
(
D∇2 ⃗pX

)
+ µ · ∇ ⃗pX + div(µ) ⃗pX .

3. HJB equation for V := − log ⃗pX (Hopf–Cole transformation):

∂tV = − tr
(
D∇2V

)
+ µ · ∇V − div(µ) + 1

2

∥∥σ⊤∇V
∥∥2, V (·,T ) = − log pX0

.

4. Reparametrize and use verification theorem from optimal control:

E

[
log pXθ

T
(Y0)

]
≥ E

[∫ T

0

(
− div(σΦθ − µ)−

1

2
∥Φθ∥2

)
(Ys , s)ds + log pXθ

0
(YT )

]
.

5. Employ Stokes’ theorem to rewrite the divergence.

12



Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction

objective also provides a lower bound on the log-likelihood E
[
log pXθ

T
(Y0)

]
of our

model X θ (with score replaced by the NN approximation).

Proof idea with short-hands ⃗f (t) := f (T − t), D = 1
2
σσ⊤, and X = X θ:

1. Fokker-Planck for pX :

∂tpX = div
(
div
(

⃗DpX
)
− ⃗µpX

)

2. Kolmogorov backwards equation for ⃗pX :

∂t ⃗pX = − tr
(
D∇2 ⃗pX

)
+ µ · ∇ ⃗pX + div(µ) ⃗pX .

3. HJB equation for V := − log ⃗pX (Hopf–Cole transformation):

∂tV = − tr
(
D∇2V

)
+ µ · ∇V − div(µ) + 1

2

∥∥σ⊤∇V
∥∥2, V (·,T ) = − log pX0

.

4. Reparametrize and use verification theorem from optimal control:

E

[
log pXθ

T
(Y0)

]
≥ E

[∫ T

0

(
− div(σΦθ − µ)−

1

2
∥Φθ∥2

)
(Ys , s)ds + log pXθ

0
(YT )

]
.

5. Employ Stokes’ theorem to rewrite the divergence.

12



Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction

objective also provides a lower bound on the log-likelihood E
[
log pXθ

T
(Y0)

]
of our

model X θ (with score replaced by the NN approximation).

Proof idea with short-hands ⃗f (t) := f (T − t), D = 1
2
σσ⊤, and X = X θ:

1. Fokker-Planck for pX :

∂tpX = div
(
div
(

⃗DpX
)
− ⃗µpX

)
2. Kolmogorov backwards equation for ⃗pX :

∂t ⃗pX = − tr
(
D∇2 ⃗pX

)
+ µ · ∇ ⃗pX + div(µ) ⃗pX .

3. HJB equation for V := − log ⃗pX (Hopf–Cole transformation):

∂tV = − tr
(
D∇2V

)
+ µ · ∇V − div(µ) + 1

2

∥∥σ⊤∇V
∥∥2, V (·,T ) = − log pX0

.

4. Reparametrize and use verification theorem from optimal control:

E

[
log pXθ

T
(Y0)

]
≥ E

[∫ T

0

(
− div(σΦθ − µ)−

1

2
∥Φθ∥2

)
(Ys , s)ds + log pXθ

0
(YT )

]
.

5. Employ Stokes’ theorem to rewrite the divergence.

12



Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction

objective also provides a lower bound on the log-likelihood E
[
log pXθ

T
(Y0)

]
of our

model X θ (with score replaced by the NN approximation).

Proof idea with short-hands ⃗f (t) := f (T − t), D = 1
2
σσ⊤, and X = X θ:

1. Fokker-Planck for pX :

∂tpX = div
(
div
(

⃗DpX
)
− ⃗µpX

)
2. Kolmogorov backwards equation for ⃗pX :

∂t ⃗pX = − tr
(
D∇2 ⃗pX

)
+ µ · ∇ ⃗pX + div(µ) ⃗pX .

3. HJB equation for V := − log ⃗pX (Hopf–Cole transformation):

∂tV = − tr
(
D∇2V

)
+ µ · ∇V − div(µ) + 1

2

∥∥σ⊤∇V
∥∥2, V (·,T ) = − log pX0

.

4. Reparametrize and use verification theorem from optimal control:

E

[
log pXθ

T
(Y0)

]
≥ E

[∫ T

0

(
− div(σΦθ − µ)−

1

2
∥Φθ∥2

)
(Ys , s)ds + log pXθ

0
(YT )

]
.

5. Employ Stokes’ theorem to rewrite the divergence.

12



Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction

objective also provides a lower bound on the log-likelihood E
[
log pXθ

T
(Y0)

]
of our

model X θ (with score replaced by the NN approximation).

Proof idea with short-hands ⃗f (t) := f (T − t), D = 1
2
σσ⊤, and X = X θ:

1. Fokker-Planck for pX :

∂tpX = div
(
div
(

⃗DpX
)
− ⃗µpX

)
2. Kolmogorov backwards equation for ⃗pX :

∂t ⃗pX = − tr
(
D∇2 ⃗pX

)
+ µ · ∇ ⃗pX + div(µ) ⃗pX .

3. HJB equation for V := − log ⃗pX (Hopf–Cole transformation):

∂tV = − tr
(
D∇2V

)
+ µ · ∇V − div(µ) + 1

2

∥∥σ⊤∇V
∥∥2, V (·,T ) = − log pX0

.

4. Reparametrize and use verification theorem from optimal control:

E

[
log pXθ

T
(Y0)

]
≥ E

[∫ T

0

(
− div(σΦθ − µ)−

1

2
∥Φθ∥2

)
(Ys , s)ds + log pXθ

0
(YT )

]
.

5. Employ Stokes’ theorem to rewrite the divergence.

12



Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction

objective also provides a lower bound on the log-likelihood E
[
log pXθ

T
(Y0)

]
of our

model X θ (with score replaced by the NN approximation).

Proof idea with short-hands ⃗f (t) := f (T − t), D = 1
2
σσ⊤, and X = X θ:

1. Fokker-Planck for pX :

∂tpX = div
(
div
(

⃗DpX
)
− ⃗µpX

)
2. Kolmogorov backwards equation for ⃗pX :

∂t ⃗pX = − tr
(
D∇2 ⃗pX

)
+ µ · ∇ ⃗pX + div(µ) ⃗pX .

3. HJB equation for V := − log ⃗pX (Hopf–Cole transformation):

∂tV = − tr
(
D∇2V

)
+ µ · ∇V − div(µ) + 1

2

∥∥σ⊤∇V
∥∥2, V (·,T ) = − log pX0

.

4. Reparametrize and use verification theorem from optimal control:

E

[
log pXθ

T
(Y0)

]
≥ E

[∫ T

0

(
− div(σΦθ − µ)−

1

2
∥Φθ∥2

)
(Ys , s)ds + log pXθ

0
(YT )

]
.

5. Employ Stokes’ theorem to rewrite the divergence.

12



References i

Anderson, B. D. (1982).

Reverse-time diffusion equation models.

Stochastic Processes and their Applications, 12(3):313–326.

Ho, J., Jain, A., and Abbeel, P. (2020).

Denoising diffusion probabilistic models.

Advances in Neural Information Processing Systems, 33:6840–6851.

Kingma, D., Salimans, T., Poole, B., and Ho, J. (2021).

Variational diffusion models.

Advances in Neural Information Processing Systems, 34:21696–21707.

Nichol, A. Q. and Dhariwal, P. (2021).

Improved denoising diffusion probabilistic models.

In International Conference on Machine Learning, pages 8162–8171. PMLR.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2021).

High-resolution image synthesis with latent diffusion models.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015).

Deep unsupervised learning using nonequilibrium thermodynamics.

In International Conference on Machine Learning, pages 2256–2265. PMLR.

Song, Y. and Ermon, S. (2019).

Generative modeling by estimating gradients of the data distribution.

Advances in Neural Information Processing Systems, 32.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020).

Score-based generative modeling through stochastic differential equations.

In International Conference on Learning Representations.

13


	Introduction
	Engineering Perspective
	SDE-based perspective

