Diffusion models

SDE-based perspectives

Julius Berner
October 12, 2022

University of Vienna

Introduction

Sampling from high-dimensional distributions

Task

Sample from a high-dimensional distribution Yjp.

 https://en.m.wikipedia.org/wiki/File:Cat_poster_1.jpg
 https://en.wikipedia.org/wiki/File:Bimodal-bivariate-small.png

Sampling from high-dimensional distributions

Task

Sample from a high-dimensional distribution Yjp.
Yo can be given in the form of:

2. an (unnormalized) density p with
Py, = p/Z (e.g., in Bayesian statistics,
computational physics and chemistry).

1. samples Y()(i) ~ Yy (images, text,
sound, ...).

Bttps://en.n.uikipedia.org/wiki/File:Cat_poster_1.ipg

Bttps://en. wikiped wiki/File:Bin 11.png

 https://en.m.wikipedia.org/wiki/File:Cat_poster_1.jpg
 https://en.wikipedia.org/wiki/File:Bimodal-bivariate-small.png

Overview of generative models

GAN: Adversarial < || x S Generator <
training D(x) G(z)

VAE: maximize Decoder %
variational lower bound po(x|z)
Flow-based models: x Flow z |“l’f'59 x.
Invertible transform of f(x) [(=)

distributions

Diffusion models:_ X X1
Gradually add Gaussian -~ -2
noise and then reverse

History: The development of diffusion models builds upon (denoising) diffusion
probabilistic modeling [Sohl-Dickstein et al., 2015, Ho et al., 2020] and score matching
with Langevin dynamics [Song and Ermon, 2019].

 https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Diffusion models

State-of-the art in generative modeling and likelihood estimation of high-dimensional
image data [Nichol and Dhariwal, 2021, Kingma et al., 2021].

Diffusion models

State-of-the art in generative modeling and likelihood estimation of high-dimensional
image data [Nichol and Dhariwal, 2021, Kingma et al., 2021].

Figure 1: Sampling conditioned on the text prompt “a photograph of an astronaut riding a horse”
using the stable diffusion model [Rombach et al., 2021].

Engineering Perspective

Diffusion process

Diffusion process Y:: Gradually add coordinate-wise Gaussian noise, i.e., conditioned on
d-dimensional data Yy, we have that

Yt:OltYOJrBtN, N'\f./\/(o,l)7 te [07 T]

[Nichol and Dhariwal, 2021]

Diffusion process

Diffusion process Y:: Gradually add coordinate-wise Gaussian noise, i.e., conditioned on
d-dimensional data Yy, we have that

Yt:OltYOJrBtN, N'\f./\/(o,l)7 te [07 T]

[Nichol and Dhariwal, 2021]

Typical noise schedules for o and g = /1 — a%:

1.0

0.8

0.01

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

[Nichol and Dhariwal, 2021]

Noise prediction objective (with batch-size n):
£() = ZHN o (Y t())H :

where ®y is typically a U-Net (with sinusoidal positional embeddings for t) and

° Yt() = ay Y + B,y N (noisy image)
o NU) ~ A(0,T) (standardized noise)

o t) ~ ([0, T]) (time)

o Y() ~ ¥y (data)

are i.i.d. samples.

Noise prediction objective (with batch-size n):
£() = ZHN o (Y t())H :

where ®y is typically a U-Net (with sinusoidal positional embeddings for t) and
° Yt() = ay Y + B,y N (noisy image)
o NU) ~ A(0,T) (standardized noise)
o t0) ~U([0, T]) (time)
o Y() ~ ¥y (data)
are i.i.d. samples.
This is a reparametrization of a denoising objective, which works better in practice.
After training, we can approximately denoise Y; as follows:

Y — Be®g(Ye, t)

ot

Yo ~

Architecture of typical U-Nets

@ 2
&8 ?
- x
= 2

- R |||+
S x
= ot
3 N
3 3

e

[

/ 32x32x 256

\ 952 XZE XZE

16x 16 x 384
V8E X QL X9l
+
[

N

N\

] Residual Block

Muli-head Attention
10 Image

8x8x512 |

———> Downlupsample Conv

——> Skip Connection

 https://www.assemblyai.com/blog/how-imagen-actually-works/

Architecture of typical U-Nets

@ 2
&8 ?
= x
= 2

el g R |||+
3 x
= ot
3 N
3 3

\

[

/ 32x32x 256
\ 952 XZE XZE

3 >
“ =
< X
s e e —————————3 |- |-
x Py
> 8
e 2
— /
] Residusl Block
o
Multi-head Attention E
10 Image N > N
———» Downlupsample Conv >
——> Skip Connection
§ & § =
= Q = Q
8 s 3 s
T S = T S =
———> E >3 |>2 > E 32 > —
= [4 = S & 3
z 3 z S
= 2 = H
g 5
8 S 8 S
T -4
o © o @

Bttps: //uuu. a

mblyai . con/blog/hou- inagen-actually-works/

 https://www.assemblyai.com/blog/how-imagen-actually-works/

Sampling

Bayes' theorem yields the following formula for Ys (conditioned on Yy and Y;: with s < t):
YS:et:S(Y07Yt7N)7 NNN(071)7

Bar (a%ﬁ2> o2
O+.5(Yo, Yi, N) = =Y, — 2)Y p—— Ny V)
t,s(Yo, Yt, N) ﬁ?&s t+ | as asﬁ% 0+ 1/ 52 a?ﬁ?

mean standard deviation

where

Sampling

Bayes' theorem yields the following formula for Ys (conditioned on Yy and Y;: with s < t):

Ys:et,s(Y07Yt7N)7 NNN(Ovl)v

Bar (a%ﬁ2> a2 pd
O+.5(Yo, Yi, N) = =Y, — 2)Y p—— Ny V)
t,s(Yo, Yt, N) ﬁ?&s t+ | as asﬁ? 0+ 1/ 52 a?ﬁ?

mean standard deviation

where

Idea: Use the NN prediction for Y; and perform ancestral sampling.

1. Sample X7 ~ N(0,I) (approximately distributed as Y7).

2. lterate:
Xe — Be®o(Xe, t
Xe1 = @r,m(t 'Bfa olXs,),Xt,N(t)>
t
|

denoising
with i.i.d. N(® ~ A(0,T).
3. Output Xp (approximately distributed as the data Yjp).

[Ho et al., 2020]

Sampling

Bayes' theorem yields the following formula for Ys (conditioned on Yy and Y;: with s < t):

Ys:et,s(Y07Yt7N)7 NNN(Ovl)v

Bar (a%ﬁ2> a2 pd
O+.5(Yo, Yi, N) = =Y, — 2)Y p—— Ny V)
t,s(Yo, Yt, N) ﬁ?&s t+ | as asﬁ? 0+ 1/ 52 a?ﬁ?

mean standard deviation

where

Idea: Use the NN prediction for Y; and perform ancestral sampling.

1. Sample X7 ~ N(0,I) (approximately distributed as Y7).

2. lterate:
Xe — Be®o(Xe, t
Xe1 = @r,m(t 'Bfa olXs,),Xt,N(t)>
t
|

denoising
with i.i.d. N(® ~ A(0,T).
3. Output Xp (approximately distributed as the data Yjp).

@iﬂ@ @*}H@D This can be viewed as variational

auto-encoder with fixed encoder.

[Ho et al., 2020]

Stable diffusion model

Use diffusion in latent space of a pre-trained (regularized) auto-encoder and condition the
U-Net on features given by a pre-trained domain-specific encoder (e.g., a transformer for

text prompts):

Latent Space Conditioning
& HHB—— Diffusion Process ——>, Eemantiq
Ma

Denoising U-Net €g 27 Text
Repres
entations

E

Pixel Space
To
El¢ i () <-T
—

denoising step crossattention switch skip connection concat

[Rombach et al., 2021]

SDE-based perspective

Stochastic differential equations (SDEs)

Consider solutions Y to SDEs of the form
dYs = p(Ys)ds + o(Ys) dBs,
~—~— S~—~—
drift diffusion

where Bs is a d-dimensional Brownian motion.

Stochastic differential equations (SDEs)

Consider solutions Y to SDEs of the form
dYs = p(Ys)ds + o(Ys) dBs,
~—~— S~—~—
drift diffusion
where Bs is a d-dimensional Brownian motion.
Intuition via Euler-Maruyama scheme \A/tkﬂ X Y

kaﬂ = {\/tk + M(ka)(tl@l —ti) + U(Vtk) (Btk+1 —By).
——

~N(0,tgp g —tg)

s Figure 2: SDE solution and
Euler-Maruyama scheme with
<00 .

tk:WTandN:ll,S.

Inference SDE

Consider a (time-varying) Ornstein—-Uhlenbeck process
dYs = pu(s)Ysds + o(s)dBs,

which diffuses the data Yj.

[Song et al., 2020]

Inference SDE

Consider a (time-varying) Ornstein—-Uhlenbeck process
dYs = pu(s)Ysds + o(s)dBs,

which diffuses the data Yj.

[Song et al., 2020]

Note that, conditioned on Yjp, the solution Ys is normally distributed. For the choices

o' (s)B?(s
and o%(s) = 28(s)B'(s) — 2%

o/ (s)

o(s)

we recover py, |y, (-] Y0) = N(as Yo, B21).

n(s) =

Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]
The solutions to the SDE

aX. = (JUTV log py,_. — M) (Xs, s)ds + o(s)dBs, Xo ~ Yr,
and the ODE

1
dXs = (EUO'TV|Og Py, . — u) (Xs,s)ds, Xo~ YT,

both satisfy that Xs ~ Y7 _g, where py, _is the density of Y7_.

Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]
The solutions to the SDE

dXs = (O'UTV log py; . — u) (Xs,s)ds + o(s)dBs, Xo~ YT,
and the ODE
dXs = (%UO’Tng Py, . — u) (Xs,s)ds, Xo~ YT,
both satisfy that Xs ~ Y7 _g, where py, _is the density of Y7_.

A We need an approximation to the score V log PYy_.-

Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]
The solutions to the SDE

dXs = (O'UTV log py; . — u) (Xs,s)ds + o(s)dBs, Xo~ YT,
and the ODE
dXs = (%UO’Tng Py, . — u) (Xs,s)ds, Xo~ YT,
both satisfy that Xs ~ Y7 _g, where py, _is the density of Y7_.

A We need an approximation to the score V log PYy_.-

Using the noise prediction network ®g, we obtain that
Ye—arYo Po(Ye,t)

V log py, |y, (Yt Yo) = 3 5

Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]
The solutions to the SDE

dXs = (O'UTV log py; . — u) (Xs,s)ds + o(s)dBs, Xo~ YT,
and the ODE
dXs = (%UO’Tng Py, . — u) (Xs,s)ds, Xo~ YT,
both satisfy that Xs ~ Y7 _g, where py, _is the density of Y7_.

A We need an approximation to the score V log PYy_.-

Using the noise prediction network ®g, we obtain that

Ye—arYo Po(Ye,t)
B2 B

V log py,|v, (Yt Yo) =

Sampling:

1. Sample Xo ~ N(0,1).
2. Plug-in the approximate score and simulate the SDE (using Euler-Maruyama) or the
ODE (analogous to time-continuous normalizing flows) to obtain samples Xt.

Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction
objective also provides a lower bound on the log-likelihood E [Iog Pxeo (YO)] of our
T

model X? (with score replaced by the NN approximation).

Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction
objective also provides a lower bound on the log-likelihood E [Iog px$.(Y0)] of our
model X? (with score replaced by the NN approximation).

Proof idea with short-hands (t) := f(T — t), D= 300", and X = X?:

1. Fokker-Planck for px:
Orpx = div (div (Dpx) — fipx)

Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction
objective also provides a lower bound on the log-likelihood E [Iog px$.(Y0)] of our
model X? (with score replaced by the NN approximation).

Proof idea with short-hands (t) := f(T — t), D= 300", and X = X?:

1. Fokker-Planck for px:
Orpx = div (div (Dpx) — fipx)

2. Kolmogorov backwards equation for py:

Oibx = —tr (DV?px) + p - Vpx + div(u)px-

Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction
objective also provides a lower bound on the log-likelihood E [Iog px$.(Y0)] of our
model X? (with score replaced by the NN approximation).
Proof idea with short-hands (t) := f(T — t), D= 300", and X = X?:
1. Fokker-Planck for px:
Orpx = div (div (Dpx) — fipx)

2. Kolmogorov backwards equation for py:

Oibx = —tr (DV?px) + p - Vpx + div(u)px-

3. HJB equation for V := —log pyx (Hopf-Cole transformation):
8V = —tr (DV2V) 4+ - VV —div(u) + ||l TVV|?, V(. T) = —log px,-

Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction
objective also provides a lower bound on the log-likelihood E [Iog px$.(Y0)] of our
model X? (with score replaced by the NN approximation).
Proof idea with short-hands (t) := f(T — t), D= 300", and X = X?:
1. Fokker-Planck for px:
Orpx = div (div (Dpx) — fipx)

2. Kolmogorov backwards equation for py:

Oibx = —tr (DV?px) + p - Vpx + div(u)px-

3. HJB equation for V := —log pyx (Hopf-Cole transformation):
8V = —tr (DV2V) 4+ - VV —div(u) + ||l TVV|?, V(. T) = —log px,-

4. Reparametrize and use verification theorem from optimal control:

B 108 pyg (¥0)] > [/DT (~divto®o —) = 100l) (¥s.)ds + log g (¥7)]

Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction
objective also provides a lower bound on the log-likelihood E [Iog Pxeo (YO)] of our
T

model X? (with score replaced by the NN approximation).
Proof idea with short-hands (t) := f(T — t), D= 300", and X = X?:

1. Fokker-Planck for px:
Orpx = div (div (Dpx) — fipx)

2. Kolmogorov backwards equation for py:

Oibx = —tr (DV?px) + p - Vpx + div(u)px-

3. HJB equation for V := —log pyx (Hopf-Cole transformation):
8V = —tr (DV2V) 4+ - VV —div(u) + ||l TVV|?, V(. T) = —log px,-

4. Reparametrize and use verification theorem from optimal control:

B 108 pyg (¥0)] > [/DT (~divto®o —) = 100l) (¥s.)ds + log g (¥7)]

5. Employ Stokes’ theorem to rewrite the divergence.

References i

Anderson, B. D. (1982).
Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313-326
Ho, J., Jain, A., and Abbeel, P. (2020).
Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840—6851.
Kingma, D., Salimans, T., Poole, B., and Ho, J. (2021).
Variational diffusion models.
Advances in Neural Information Processing Systems, 34:21696-21707
Nichol, A. Q. and Dhariwal, P. (2021)
p isii iffusion pre ilistic models.
In International Conference on Machine Learning, pages 8162-8171. PMLR

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2021).
High-resolution image synthesis with latent diffusion models.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015).
Deep unsupervised learning using nonequilibrium thermodynamics.
In International Conference on Machine Learning, pages 2256-2265. PMLR

Song, Y. and Ermon, S. (2019).
Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020).

deling through stochastic differential equations.
In International Conference on Learning Representations.

S, based generative

	Introduction
	Engineering Perspective
	SDE-based perspective

