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Introduction



Sampling from high-dimensional distributions

Task

Sample from a high-dimensional distribution Y0.

Y0 can be given in the form of:

1. samples Y
(i)
0 ∼ Y0 (images, text,

sound, ...).

https://en.m.wikipedia.org/wiki/File:Cat_poster_1.jpg

2. an (unnormalized) density ρ with

pY0
= ρ/Z (e.g., in Bayesian statistics,

computational physics and chemistry).

https://en.wikipedia.org/wiki/File:Bimodal-bivariate-small.png
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Overview of generative models

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

History: The development of diffusion models builds upon (denoising) diffusion

probabilistic modeling [Sohl-Dickstein et al., 2015, Ho et al., 2020] and score matching

with Langevin dynamics [Song and Ermon, 2019].
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Diffusion models

State-of-the art in generative modeling and likelihood estimation of high-dimensional

image data [Nichol and Dhariwal, 2021, Kingma et al., 2021].

Figure 1: Sampling conditioned on the text prompt “a photograph of an astronaut riding a horse”

using the stable diffusion model [Rombach et al., 2021].
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Engineering Perspective



Diffusion process

Diffusion process Yt : Gradually add coordinate-wise Gaussian noise, i.e., conditioned on

d-dimensional data Y0, we have that

Yt = αtY0 + βtN, N ∼ N (0, I), t ∈ [0,T ].

[Nichol and Dhariwal, 2021]

Typical noise schedules for αt and βt =
√

1− α2
t :

[Nichol and Dhariwal, 2021]
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Training

Noise prediction objective (with batch-size n):

L(θ) =
n∑

i=1

∥∥∥N(i) − Φθ(Y
(i)
t , t(i))

∥∥∥2,
where Φθ is typically a U-Net (with sinusoidal positional embeddings for t) and

• Y
(i)
t = αt(i)Y

(i)
0 + βt(i)N

(i) (noisy image)

• N(i) ∼ N (0, I) (standardized noise)

• t(i) ∼ U([0,T ]) (time)

• Y (i) ∼ Y0 (data)

are i.i.d. samples.

This is a reparametrization of a denoising objective, which works better in practice.

After training, we can approximately denoise Yt as follows:

Y0 ≈
Yt − βtΦθ(Yt , t)

αt
.
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Architecture of typical U-Nets

https://www.assemblyai.com/blog/how-imagen-actually-works/
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Sampling

Bayes’ theorem yields the following formula for Ys (conditioned on Y0 and Yt with s < t):

Ys = Θt,s(Y0,Yt ,N), N ∼ N (0, I),

where

Θt,s(Y0,Yt ,N) =
β2
s αt

β2
t αs

Yt +

(
αs −

α2
tβ

2
s

αsβ2
t

)
Y0︸ ︷︷ ︸

mean

+

√
β2
s −

α2
tβ

4
s

α2
sβ

2
t︸ ︷︷ ︸

standard deviation

N.

Idea: Use the NN prediction for Y0 and perform ancestral sampling.

1. Sample XT ∼ N (0, I) (approximately distributed as YT ).

2. Iterate:

Xt−1 := Θt,t−1

(
Xt − βtΦθ(Xt , t)

αt︸ ︷︷ ︸
denoising

,Xt ,N
(t)

)

with i.i.d. N(t) ∼ N (0, I).

3. Output X0 (approximately distributed as the data Y0).

[Ho et al., 2020]

This can be viewed as variational

auto-encoder with fixed encoder.

7



Sampling

Bayes’ theorem yields the following formula for Ys (conditioned on Y0 and Yt with s < t):

Ys = Θt,s(Y0,Yt ,N), N ∼ N (0, I),

where

Θt,s(Y0,Yt ,N) =
β2
s αt

β2
t αs

Yt +

(
αs −

α2
tβ

2
s

αsβ2
t

)
Y0︸ ︷︷ ︸

mean

+

√
β2
s −

α2
tβ

4
s

α2
sβ

2
t︸ ︷︷ ︸

standard deviation

N.

Idea: Use the NN prediction for Y0 and perform ancestral sampling.

1. Sample XT ∼ N (0, I) (approximately distributed as YT ).

2. Iterate:

Xt−1 := Θt,t−1

(
Xt − βtΦθ(Xt , t)

αt︸ ︷︷ ︸
denoising

,Xt ,N
(t)

)

with i.i.d. N(t) ∼ N (0, I).

3. Output X0 (approximately distributed as the data Y0).

[Ho et al., 2020]

This can be viewed as variational

auto-encoder with fixed encoder.

7



Sampling

Bayes’ theorem yields the following formula for Ys (conditioned on Y0 and Yt with s < t):

Ys = Θt,s(Y0,Yt ,N), N ∼ N (0, I),

where

Θt,s(Y0,Yt ,N) =
β2
s αt

β2
t αs

Yt +

(
αs −

α2
tβ

2
s

αsβ2
t

)
Y0︸ ︷︷ ︸

mean

+

√
β2
s −

α2
tβ

4
s

α2
sβ

2
t︸ ︷︷ ︸

standard deviation

N.

Idea: Use the NN prediction for Y0 and perform ancestral sampling.

1. Sample XT ∼ N (0, I) (approximately distributed as YT ).

2. Iterate:

Xt−1 := Θt,t−1

(
Xt − βtΦθ(Xt , t)

αt︸ ︷︷ ︸
denoising

,Xt ,N
(t)

)

with i.i.d. N(t) ∼ N (0, I).

3. Output X0 (approximately distributed as the data Y0).

[Ho et al., 2020]

This can be viewed as variational

auto-encoder with fixed encoder.

7



Stable diffusion model

Use diffusion in latent space of a pre-trained (regularized) auto-encoder and condition the

U-Net on features given by a pre-trained domain-specific encoder (e.g., a transformer for

text prompts):

[Rombach et al., 2021]
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SDE-based perspective



Stochastic differential equations (SDEs)

Consider solutions Y to SDEs of the form

dYs = µ(Ys)︸ ︷︷ ︸
drift

ds + σ(Ys)︸ ︷︷ ︸
diffusion

dBs ,

where Bs is a d-dimensional Brownian motion.

Intuition via Euler-Maruyama scheme Ŷtk+1 ≈ Ytk :

Ŷtk+1 = Ŷtk + µ(Ŷtk )(tk+1 − tk ) + σ(Ŷtk ) (Btk+1 − Btk )︸ ︷︷ ︸
∼N (0,tk+1−tk )

.

Figure 2: SDE solution and

Euler-Maruyama scheme with

tk = kT
N and N = 4, 8.
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Inference SDE

Consider a (time-varying) Ornstein–Uhlenbeck process

dYs = µ(s)Ysds + σ(s)dBs ,

which diffuses the data Y0.

[Song et al., 2020]

Note that, conditioned on Y0, the solution Ys is normally distributed. For the choices

µ(s) =
α′(s)

α(s)
and σ2(s) = 2β(s)β′(s)− 2

α′(s)β2(s)

α(s)

we recover pYs |Y0
(·|Y0) = N (αsY0, β

2
s I).
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Generative SDE

We can reverse the diffusion (proven via the Fokker-Planck equation):

Reverse-time generative SDE/ODE [Anderson, 1982, Song et al., 2020]

The solutions to the SDE

dXs =
(
σσ⊤∇ log pYT−s

− µ
)
(Xs , s)ds + σ(s)dBs , X0 ∼ YT ,

and the ODE

dXs =

(
1

2
σσ⊤∇ log pYT−s

− µ

)
(Xs , s)ds, X0 ∼ YT ,

both satisfy that Xs ∼ YT−s , where pYT−s
is the density of YT−s .

 We need an approximation to the score ∇ log pYT−s
.

Using the noise prediction network Φθ, we obtain that

∇ log pYt |Y0
(Yt |Y0) =

Yt − αtY0

β2
t

≈
Φθ(Yt , t)

βt
.

Sampling:

1. Sample X0 ∼ N (0, I).

2. Plug-in the approximate score and simulate the SDE (using Euler-Maruyama) or the

ODE (analogous to time-continuous normalizing flows) to obtain samples XT .

Having access to samples from Y0, one can use the denoising score matching objective

min
θ
E

[∥∥Φθ(Yτ , τ)−∇ log pYτ |Y0
(Yτ |Y0)

∥∥2] , τ ∈ Unif([0,T ]),

to learn the score Φθ(·, s) ≈ ∇ log pYs .
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Variational Lower Bound

Up to a constant and a time-dependent weighting, the (negative) noise prediction

objective also provides a lower bound on the log-likelihood E
[
log pXθ

T
(Y0)

]
of our

model X θ (with score replaced by the NN approximation).

Proof idea with short-hands ⃗f (t) := f (T − t), D = 1
2
σσ⊤, and X = X θ:

1. Fokker-Planck for pX :

∂tpX = div
(
div
(

⃗DpX
)
− ⃗µpX

)
2. Kolmogorov backwards equation for ⃗pX :

∂t ⃗pX = − tr
(
D∇2 ⃗pX

)
+ µ · ∇ ⃗pX + div(µ) ⃗pX .

3. HJB equation for V := − log ⃗pX (Hopf–Cole transformation):

∂tV = − tr
(
D∇2V

)
+ µ · ∇V − div(µ) + 1

2

∥∥σ⊤∇V
∥∥2, V (·,T ) = − log pX0

.

4. Reparametrize and use verification theorem from optimal control:

E

[
log pXθ

T
(Y0)

]
≥ E

[∫ T

0

(
− div(σΦθ − µ)−

1

2
∥Φθ∥2

)
(Ys , s)ds + log pXθ

0
(YT )

]
.

5. Employ Stokes’ theorem to rewrite the divergence.
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)
(Ys , s)ds + log pXθ

0
(YT )

]
.

5. Employ Stokes’ theorem to rewrite the divergence.
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