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Implicit regularization/bias

▶ why do very expressive models generalize?
▶ overparametrized/underdermined models
▶ with many global solutions
▶ no capacity control specified in the objective
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Setting

only gradient descent (GD)

▶ least squares
▶ logistic regression
▶ (simple) nonlinear models
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Examples of implicit biases

▶ algorithm used
▶ large batch sizes → sharp solutions [Keskar et al., 2017]
▶ large step sizes → flatter minima
▶ initialization
▶ early stopping
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Underdetermined least squares

min
w

∥Xw − y∥2

▶ We assume ∃w̄ : Xw̄ = y
▶ Q: Which solution does GD converge to?1

▶ A: minimal distance to the starting point.

initialized at the origin we actually solve the ridge regression
min

w
∥Xw − y∥2 + λ∥w∥2

(equivalent to Bayesian regression with Gaussian prior).

Also extends to momentum methods.

1irresspective of the step size
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Binary classification with linearly separable data

min
w

n∑
i=1

exp(−yix⊺
i w)

▶ no solution exists
(iterates diverge to infinity)

▶ GD converges to the
maximum-margin classifiera

▶ the solution to hard-margin SVM
min

w
∥w∥2 s.t. yi(w⊺xi) ≥ 1

anormalized iterates

The convergence is extremely slow O(1/ log t).
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least squares for non-Euclidian geometries

Mirror descent:
wt+1 = arg min

w
{ηt⟨w ,∇ℓ(wt)⟩ + Dψ(w ,wt)}

▶ negative entropy ψ(w) = ∑
i wi log wi

▶ Kullback-Leibler divergence Dψ

▶ gives exponentiated/multiplicative gradient

In general: Iterates converge to
arg min
w :Xw=y

Dψ(w ,w0)

For KL divergence we get the maximum entropy solution.
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Convex vs. Nonconvex

▶ previous models where convex
▶ observed bias irresspective of the step size
▶ non-convex case is more delicate then in convex GD

▶ manifold spanned by the gradients is no longer flat
▶ step size or momentum make you fall off
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diagonal linear network, [Woodworth et al., 2020]
Consider the following nonconvex parametrization:

min
u

n∑
i=1

∥⟨u ⊙ u, xi⟩ − yi∥2.

▶ GD wrt to u can be seen as mirror descent
in predictor space w = u ⊙ u

▶ the Bregman distance depends on initialization αe
▶ small initialization gives minimal L1 norm

the “rich” regime
▶ large initialization gives known L2 regularization

the “kernel” or “lazy” regime

Caveat: holds for gradient flow.
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with macroscopic step sizes [Nacson et al., 2022]
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Matrix factorization

min
U,V

n∑
i=1

∥⟨UV ⊺,Xi⟩ − yi∥2

Similar results for infinitesimal step sizes
▶ implicit bias depends on initialization
▶ nuclear norm instead of L1 [Gunasekar et al., 2017]
▶ requires restricted isometry (RIP) [Li et al., 2018]
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Thank You!
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