Matrix decomposition as an
alternative to attention

Paper from ICLR 2021 ~DL seminar ~ Ruard van Workum

Attention has become the most widely adopted
global context module

But how irreplaceable is it?

Matrix Decomposition/Factorization as noise-removal

Using classic techniques of matrix decomposition, we can factorize a matrix into a
low-rank reconstruction and noise.

Suppose that the given data are arranged as the columns of a large matrix X = [xy,--- ,x,| € R,
A general assumption is that there is a low-dimensional subspace, or a union of multiple subspaces
hidden in X . That is, there exists a dictionary matrix D = [d;.--- .d,| € R?*" and corresponding
codes C = [¢y, -+ .¢,] € R™*" that X can be expressed as

generation

X=X+E=DC+E, (h
—_—
decomposition
where X € R?*" is the output low-rank reconstruction, and E € R?*™ is the noise matrix to be
discarded. Here we assume that the recovered matrix X has the low-rank property, such that

rank(X) < min(rank(D), rank(C)) < r < min(d. n). (2)

Modelling Global context / long-range dependencies

Observation 1: long-range dependencies can be modelled through low-rank

e Long-range dependencies -> correlation -> low-rank
e Interestingly, self-attention matrices are also known to have a low-rank

structure:
10 12-layers Transformer 24-layers Transformer
g " | b= &
= 0.96
i, A =2 - E
: 2 .
T Tos .3 HE W 094
P—uof QK 2 +HE]
= softmax e i =5 Hl B Qoo
vy z " 2 ¢ Hl i
i - =7 HE ™
i : =
3 os o EREHL [
gV — IMDB — IMOB 10 0.88
; Wikil03 Wikil03 11
0'40 128 512 0 128 512 02 34 56789 1011

Eigenvalue index Eigenvalue index Head index

Modelling Global context / long-range dependencies

Observation 2: “Vanilla” CNN’s extract features that are too local for tasks
requiring global context

building

(b) Ground Truth

curtain
house

(c) FCN (baseline) (d) CFNet (ours) (e) legend

(a) Image (b) Ground Truth (c) FCN (baseline) (d) EncNet (ours) (e) Legend

Key ldea

“Learn global context by extracting the (low-rank) clean signal subspace of inputs
using classic matrix decomposition, which filters out the redundancy and
incompleteness (of vanilla CNN’s) at the same time.”

e By-product of the low-rank assumption Redundancy S . Denoising
is efficiency in terms of computation - # - o
and memory

e This is implemented through the
“Hamburger” architecture

How does that look like?

How does that look like?

Turn image tensors 2 ¢ RCXEXW into hyper-pixels * € RE*#W

W M (W,Z)
Upper Bread (Linear Transformation) [S
MWL ZD O ol dxn dxr rXn dxn
M -
D ey

Wl

Hams

(Matrix Decomposition)

L A B |
Lower Bread (Linear Transformation)
Matrix Decomposition
z
- — cnaed

notion of Sec. 2.1, the general objective function of matrix decomposition is
%lig L(X,DC)+ Ri(D)+ R2(C) 4)

where L is the reconstruction loss, R and R are regularization terms for the dictionary D and the
codes C. Denote the optimization algorithm to minimize Eq. (4) as M. M is the core architecture
we deploy in our global context module. To help readers further understand this modeling, We also
provide a more intuitive illustration in Appendix G.

Thus, we’re modelling the global context as a low-rank recovery problem with
matrix decomposition as its solution.

Matrix decomposition part (Ham)

min |X — DC||p s.t.D;; >0,Cj > 0.

lgig |X — DC|p st.c; € {e,es,---,e.},
Algorithm 1 Ham: Soft VQ Algorithm 2 Ham: NMF with MU
Input X. Initialize D, C. Input X. Initialize non-negative D, C
for k from 1 to K do for k from 1 to K do
DT X);;
C + sof I;ma:zr(%cosine(D5 X)) Cij « Cij((Dr—ch)u
T 1z -1 (XC");;

end for end for

Output X = DC. Output X = DC.

Sounds cool, but how do | compute gradients?

Geoff Hinton after writing the
paper on backprop i 1986

XA

but your kidsjt are gonna love it.

Approximation to BPTT

Imagine we have some iterative process with input x, output y and intermediate
output h_i, and 2 operators/functions F and G:

hit! = F(hi,x), i=0,1,---,t—1. i g(ht).

In the BPTT algorithm the Jacobian matrix then follows from the Chain rule:

e S8y oh? | oh'™*
dx Z Wit | ox Cal;
i=0 oh t>j>t—i 0 0 | dnt g

Approximation to BPTT
Big problem: Gradients can become very ill-behaved in such scheme. (specifically
when t becomes large)

The problematic scale of the gradients arise from the multiplication term and summation of a
potentially infinite series when t -> infinity.

t—1 . t—i 2 o0
oy _ H h’ | dh { dy H dh’ Oht~* }
ox (9ht (9hJ 1 ox dht t>j>t—i ght—1 Ox 1

t>3>t—1

Solution: View the summation as a series & only consider the first term (last step of
optimization)

oy _ oy oF
ox Oh* Ox°

(one-step gradient)

Approximation to BPTT

Terms should vanish as t increases: Proposition 1 {h'}, has linear convergence.

S . dy _ Oy (1 _ OF\-19F
Proposition 2 th_glc 5= = o — 5=) " 5=

W < kel

oy . %) 3
Proposition 3 lim gl =0, Jim 5 T

Besides, they reach higher scores on tasks using One-Step &

it reduce complexity from O(t) -> O(1)

Method One-Step BPTT

VQ 71.77(77.4) 76.6(76.3)
CD 78.1(77.5) 75.0(74.6)
NMF 78.3(77.8) 77.4(717.0)

Experiments

Ablation Study on PASCAL VOC dataset:

Table 2: Ablation on components of Hamburger with NMF Ham.

Method mloU(%) Params
baseline T759(75.7) 32.67TM
basic 78.3(77.8) +0.50M
- ham 75.8(75.6) +0.50M
- upper bread 77.0(76.8) +0.25M
- lower bread T1301T1.2) +0.25M
only ham 77.0(76.8) +0OM

Experiments

Screening latent dimensions r, d & optimization iterations K:

NMF MEAN
- 77.75
Latent dimension d Latent dimension r o~
s 77.50
-
78.0 1 78.04 i
= o 71.25
S 7751 77.5-‘ ; S
£ i‘] S | 77.00
77.01 I
77.04 " % o - .
76.5 1 a- ’
1024 8 16 32 48 64 72 80 96128 B
- -76.50
r L=
o~
. & 1234567891012152030
Figure 3: Ablation on d and r eval

Figure 4: Ablation on K

note: Attention -> O(n”*2d), MD -> O(ndr)

Experiments

SOTA performance on PASCAL VOC dataset

Table 4: Comparisons with state-of-the-art on the Table 5: Results on the PASCAL-Context Val set.
PASCAL VOC test set w/o COCO pretraining.

Method mloU(%)
Method mloU(%) PSPNet (Zhao et al., 2017) 47.8
PSPNet (Zhao et al., 2017) 82.6 SGR* (Liang et al., 2018) 50.8
DFN* (Yuetal., 2018) 82.7 EncNet (Zhang et al., 2018) 51.7
EncNet (Zhang et al., 2018) 82.9 DANet* (Fu et al., 2019) 52.6
DANet* (Fu et al., 2019) 82.6 EMANet* (Li et al., 2019a) 5341
DMNet* (He et al., 2019a) 84 .4 DMNet* (He et al., 2019a) 54.4
APCNet* (He et al., 2019b) 84.2 APCNet* (He et al., 2019b) 54.7
CFNet* (Zhang et al., 2019b) 84.2 CFNet* (Zhang et al., 2019b) 54.0
SpyGR* (Li et al., 2020) 84.2 SpyGR* (Li et al., 2020) 52.8
SANet* (Zhong et al., 2020) 83.2 SANet* (Zhong et al., 2020) 53.0
OCR* (Yuan et al., 2020) 84.3 OCR* (Yuan et al., 2020) 54.8

HamNet 85.9 HamNet 55.2

The end Nice paper

GitHub
Link

Written in

your favourite
framework

Runs smoothly on
your system
without error or
dependency issues

