Matrix decomposition as an alternative to attention

Paper from ICLR 2021 ~DL seminar ~ Ruard van Workum

Attention has become the most widely adopted global context module

But how irreplaceable is it?

Matrix Decomposition/Factorization as noise-removal

Using classic techniques of matrix decomposition, we can factorize a matrix into a low-rank reconstruction and noise.

Suppose that the given data are arranged as the columns of a large matrix $X = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$. A general assumption is that there is a low-dimensional subspace, or a union of multiple subspaces hidden in X. That is, there exists a dictionary matrix $D = [\mathbf{d}_1, \dots, \mathbf{d}_r] \in \mathbb{R}^{d \times r}$ and corresponding codes $C = [\mathbf{c}_1, \dots, \mathbf{c}_n] \in \mathbb{R}^{r \times n}$ that X can be expressed as

$$X = \frac{\bar{X} + E = DC}{\stackrel{\longrightarrow}{\xrightarrow{decomposition}} + E},$$
(1)

where $\bar{X} \in \mathbb{R}^{d \times n}$ is the output low-rank reconstruction, and $E \in \mathbb{R}^{d \times n}$ is the noise matrix to be discarded. Here we assume that the recovered matrix \bar{X} has the low-rank property, such that

$$\operatorname{rank}(\bar{X}) \le \min(\operatorname{rank}(D), \operatorname{rank}(C)) \le r \ll \min(d, n).$$
⁽²⁾

Modelling Global context / long-range dependencies

Observation 1: long-range dependencies can be modelled through low-rank

- Long-range dependencies -> correlation -> low-rank
- Interestingly, self-attention matrices are also known to have a low-rank structure:

Modelling Global context / long-range dependencies

Observation 2: "Vanilla" CNN's extract features that are too local for tasks requiring global context

Key Idea

"Learn global context by extracting the (low-rank) clean signal subspace of inputs using classic matrix decomposition, which filters out the redundancy and incompleteness (of vanilla CNN's) at the same time."

- By-product of the low-rank assumption is efficiency in terms of computation and memory
- This is implemented through the "Hamburger" architecture

How does that look like?

How does that look like?

Turn image tensors $x \in \mathbb{R}^{C \times H \times W}$ into hyper-pixels $x \in \mathbb{R}^{C \times HW}$

notion of Sec. 2.1, the general objective function of matrix decomposition is

$$\min_{\boldsymbol{D},\boldsymbol{C}} \mathcal{L}(\boldsymbol{X},\boldsymbol{D}\boldsymbol{C}) + \mathcal{R}_1(\boldsymbol{D}) + \mathcal{R}_2(\boldsymbol{C})$$
(4)

where \mathcal{L} is the reconstruction loss, \mathcal{R}_1 and \mathcal{R}_2 are regularization terms for the dictionary D and the codes C. Denote the optimization algorithm to minimize Eq. (4) as \mathcal{M} . \mathcal{M} is the core architecture we deploy in our global context module. To help readers further understand this modeling, We also provide a more intuitive illustration in Appendix G.

Thus, we're modelling the global context as a low-rank recovery problem with matrix decomposition as its solution.

Matrix decomposition part (Ham)

 $\min_{\boldsymbol{D},\boldsymbol{C}} \|\boldsymbol{X} - \boldsymbol{D}\boldsymbol{C}\|_F \quad \text{s.t. } \mathbf{c}_i \in \{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_r\},$

 $\min_{\boldsymbol{D},\boldsymbol{C}} \|\boldsymbol{X} - \boldsymbol{D}\boldsymbol{C}\|_F \quad \text{s.t. } \boldsymbol{D}_{ij} \ge 0, \boldsymbol{C}_{jk} \ge 0.$

Algorithm 1 Ham: Soft VQ	Algorithm 2 Ham: NMF with MU
Input X . Initialize D, C .	Input X . Initialize non-negative D, C
for k from 1 to K do	for k from 1 to K do
$oldsymbol{C} \leftarrow softmax(rac{1}{T}cosine(oldsymbol{D},oldsymbol{X}))$	$oldsymbol{C}_{ij} \leftarrow oldsymbol{C}_{ij} rac{(oldsymbol{D}^+oldsymbol{X})_{ij}}{(oldsymbol{D}^+oldsymbol{D}oldsymbol{C})_{ij}}$
$oldsymbol{D} \leftarrow oldsymbol{X}oldsymbol{C}^ op diag(oldsymbol{C}oldsymbol{1}_n)^{-1}$	$oldsymbol{D}_{ij} \leftarrow oldsymbol{D}_{ij} rac{(oldsymbol{X}oldsymbol{C}^ op)_{ij}}{(oldsymbol{D}oldsymbol{C}oldsymbol{C}^ op)_{ij}}$
end for	end for
Output $\bar{X} = DC$.	Output $\bar{X} = DC$.

Sounds cool, but how do I compute gradients?

Geoff Hinton after writing the paper on backprop in 1986

Approximation to BPTT

Imagine we have some iterative process with input **x**, output **y** and intermediate output **h_i**, and 2 operators/functions F and G:

 $\mathbf{h}^{i+1} = \mathcal{F}(\mathbf{h}^i, \mathbf{x}), \quad i = 0, 1, \cdots, t-1. \qquad \mathbf{y} = \mathcal{G}(\mathbf{h}^t).$

In the BPTT algorithm the Jacobian matrix then follows from the Chain rule:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \sum_{i=0}^{t-1} \frac{\partial \mathbf{y}}{\partial \mathbf{h}^t} \left(\prod_{t \ge j > t-i} \frac{\partial \mathbf{h}^j}{\partial \mathbf{h}^{j-1}} \right) \frac{\partial \mathbf{h}^{t-i}}{\partial \mathbf{x}}.$$

Approximation to BPTT

Big problem: Gradients can become very ill-behaved in such scheme. (specifically when t becomes large)

The problematic scale of the gradients arise from the multiplication term and summation of a potentially infinite series when t -> infinity.

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \sum_{i=0}^{t-1} \frac{\partial \mathbf{y}}{\partial \mathbf{h}^t} \left(\prod_{t \ge j > t-i} \frac{\partial \mathbf{h}^j}{\partial \mathbf{h}^{j-1}} \right) \frac{\partial \mathbf{h}^{t-i}}{\partial \mathbf{x}}. \qquad \left\{ \frac{\partial \mathbf{y}}{\partial \mathbf{h}^t} \left(\prod_{t \ge j > t-i} \frac{\partial \mathbf{h}^j}{\partial \mathbf{h}^{j-1}} \right) \frac{\partial \mathbf{h}^{t-i}}{\partial \mathbf{x}} \right\}_i,$$

Solution: View the summation as a series & only consider the first term (last step of optimization)

$$\widehat{\frac{\partial \mathbf{y}}{\partial \mathbf{x}}} = \frac{\partial \mathbf{y}}{\partial \mathbf{h}^*} \frac{\partial \mathcal{F}}{\partial \mathbf{x}}.$$
 (one-step gradient)

Approximation to BPTT

Terms should vanish as t increases:

Proposition 1	${\bf h}^i{}_t$ has linear convergence.
Proposition 2	$\lim_{t\to\infty}\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{h}^*} (\boldsymbol{I} - \frac{\partial \mathcal{F}}{\partial \mathbf{h}^*})^{-1} \frac{\partial \mathcal{F}}{\partial \mathbf{x}}.$
Proposition 3	$\lim_{t \to \infty} \left\ \frac{\partial \mathbf{y}}{\partial \mathbf{h}^0} \right\ = 0, \lim_{t \to \infty} \left\ \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right\ \le \frac{L_{\mathcal{G}} L_x}{1 - L_h}$

Besides, they reach higher scores on tasks using One-Step &

it reduce complexity from $O(t) \rightarrow O(1)$

Method	One-Step	BPTT
VQ	77.7(77.4)	76.6(76.3)
CD	78.1(77.5)	75.0(74.6)
NMF	78.3(77.8)	77.4(77.0)

Experiments

Ablation Study on PASCAL VOC dataset:

Method	mIoU(%)	Params
baseline	75.9(75.7)	32.67M
basic	78.3(77.8)	+0.50M
- ham	75.8(75.6)	+0.50M
- upper bread	77.0(76.8)	+0.25M
- lower bread	77.3(77.2)	+0.25M
only ham	77.0(76.8)	+0M

Table 2: Ablation on components of Hamburger with NMF Ham.

Experiments

Screening latent dimensions r, d & optimization iterations K:

Figure 3: Ablation on d and r

Figure 4: Ablation on K

note: Attention -> $O(n^2d)$, MD -> O(ndr)

Experiments

SOTA performance on PASCAL VOC dataset

Table 4: Comparisons with state-of-the-art on the PASCAL VOC test set w/o COCO pretraining.

Table 5: Results on the PASCAL-Context Val set.

	Metho	
Method	mIoU(%)	PSPNe
PSPNet (Zhao et al., 2017)	82.6	SGR*
DFN* (Yu et al., 2018)	82.7	EncNe
EncNet (Zhang et al., 2018)	82.9	DANe
DANet* (Fu et al., 2019)	82.6	EMAN
DMNet* (He et al., 2019a)	84.4	DMNe
APCNet* (He et al., 2019b)	84.2	APCN
CFNet* (Zhang et al., 2019b)	84.2	CFNet
SpyGR* (Li et al., 2020)	84.2	SpyGF
SANet* (Zhong et al., 2020)	83.2	SANet
OCR* (Yuan et al., 2020)	84.3	OCR*
HamNet	85.9	HamN

Method	mIoU(%)	
PSPNet (Zhao et al., 2017)	47.8	
SGR* (Liang et al., 2018)	50.8	
EncNet (Zhang et al., 2018)	51.7	
DANet* (Fu et al., 2019)	52.6	
EMANet* (Li et al., 2019a)	53.1	
DMNet* (He et al., 2019a)	54.4	
APCNet* (He et al., 2019b)	54.7	
CFNet* (Zhang et al., 2019b)	54.0	
SpyGR* (Li et al., 2020)	52.8	
SANet* (Zhong et al., 2020)	53.0	
OCR* (Yuan et al., 2020)	54.8	
HamNet	55.2	

The end

