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Attention has become the most widely adopted
global context module

But how irreplaceable is it?



Matrix Decomposition/Factorization as noise-removal

Using classic techniques of matrix decomposition, we can factorize a matrix into a
low-rank reconstruction and noise.

Suppose that the given data are arranged as the columns of a large matrix X = [xy,--- ,x,| € R,
A general assumption is that there is a low-dimensional subspace, or a union of multiple subspaces
hidden in X . That is, there exists a dictionary matrix D = [d;.--- .d,| € R?*" and corresponding
codes C = [¢y, -+ .¢,] € R™*" that X can be expressed as

generation

X=X+E=DC+E, (h
—_—
decomposition
where X € R?*" is the output low-rank reconstruction, and E € R?*™ is the noise matrix to be
discarded. Here we assume that the recovered matrix X has the low-rank property, such that

rank(X) < min(rank(D), rank(C)) < r < min(d. n). (2)



Modelling Global context / long-range dependencies

Observation 1: long-range dependencies can be modelled through low-rank

e Long-range dependencies -> correlation -> low-rank
e Interestingly, self-attention matrices are also known to have a low-rank

structure:
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Modelling Global context / long-range dependencies

Observation 2: “Vanilla” CNN’s extract features that are too local for tasks
requiring global context
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Key ldea

“Learn global context by extracting the (low-rank) clean signal subspace of inputs
using classic matrix decomposition, which filters out the redundancy and
incompleteness (of vanilla CNN’s) at the same time.”

e By-product of the low-rank assumption Redundancy S . Denoising
is efficiency in terms of computation - # - o
and memory

e This is implemented through the
“Hamburger” architecture




How does that look like?




How does that look like?

Turn image tensors 2 ¢ RCXEXW into hyper-pixels * € RE*#W
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notion of Sec. 2.1, the general objective function of matrix decomposition is
%lig L(X,DC)+ Ri(D)+ R2(C) 4)

where L is the reconstruction loss, R and R are regularization terms for the dictionary D and the
codes C. Denote the optimization algorithm to minimize Eq. (4) as M. M is the core architecture
we deploy in our global context module. To help readers further understand this modeling, We also
provide a more intuitive illustration in Appendix G.



Thus, we’re modelling the global context as a low-rank recovery problem with
matrix decomposition as its solution.



Matrix decomposition part (Ham)

min |X — DC||p s.t.D;; >0,Cj > 0.

lgig |X — DC|p st.c; € {e,es,---,e.},
Algorithm 1 Ham: Soft VQ Algorithm 2 Ham: NMF with MU
Input X. Initialize D, C. Input X. Initialize non-negative D, C
for k from 1 to K do for k from 1 to K do
DT X);;
C + sof I;ma:zr(%cosine(D5 X)) Cij « Cij((Dr—ch)u
T 1z -1 (XC");;

end for end for

Output X = DC. Output X = DC.




Sounds cool, but how do | compute gradients?

Geoff Hinton after writing the
paper on backprop i 1986

XA

but your kidsjt are gonna love it.




Approximation to BPTT

Imagine we have some iterative process with input x, output y and intermediate
output h_i, and 2 operators/functions F and G:

hit! = F(hi,x), i=0,1,---,t—1. i g(ht).

In the BPTT algorithm the Jacobian matrix then follows from the Chain rule:
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Approximation to BPTT
Big problem: Gradients can become very ill-behaved in such scheme. (specifically
when t becomes large)

The problematic scale of the gradients arise from the multiplication term and summation of a
potentially infinite series when t -> infinity.

t—1 . t—i 2 o0
oy _ H h’ | dh { dy H dh’ Oht~* }
ox (9ht (9hJ 1 ox dht t>j>t—i ght—1 Ox 1

t>3>t—1

Solution: View the summation as a series & only consider the first term (last step of
optimization)

oy _ oy oF
ox  Oh* Ox°

(one-step gradient)



Approximation to BPTT

Terms should vanish as t increases: Proposition 1  {h'}, has linear convergence.
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Besides, they reach higher scores on tasks using One-Step &

it reduce complexity from O(t) -> O(1)

Method One-Step BPTT

VQ 71.77(77.4)  76.6(76.3)
CD 78.1(77.5)  75.0(74.6)
NMF 78.3(77.8)  77.4(717.0)




Experiments

Ablation Study on PASCAL VOC dataset:

Table 2: Ablation on components of Hamburger with NMF Ham.

Method mloU(%) Params
baseline T759(75.7) 32.67TM
basic 78.3(77.8) +0.50M
- ham 75.8(75.6) +0.50M
- upper bread 77.0(76.8) +0.25M
- lower bread T1301T1.2) +0.25M
only ham 77.0(76.8) +0OM




Experiments

Screening latent dimensions r, d & optimization iterations K:
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Figure 3: Ablation on d and r eval

Figure 4: Ablation on K

note: Attention -> O(n”*2d), MD -> O(ndr)



Experiments

SOTA performance on PASCAL VOC dataset

Table 4: Comparisons with state-of-the-art on the Table 5: Results on the PASCAL-Context Val set.
PASCAL VOC test set w/o COCO pretraining.

Method mloU(%)
Method mloU(%) PSPNet (Zhao et al., 2017) 47.8
PSPNet (Zhao et al., 2017) 82.6 SGR* (Liang et al., 2018) 50.8
DFN* (Yuetal., 2018) 82.7 EncNet (Zhang et al., 2018) 51.7
EncNet (Zhang et al., 2018) 82.9 DANet* (Fu et al., 2019) 52.6
DANet* (Fu et al., 2019) 82.6 EMANet* (Li et al., 2019a) 5341
DMNet* (He et al., 2019a) 84 .4 DMNet* (He et al., 2019a) 54.4
APCNet* (He et al., 2019b) 84.2 APCNet* (He et al., 2019b) 54.7
CFNet* (Zhang et al., 2019b) 84.2 CFNet* (Zhang et al., 2019b) 54.0
SpyGR* (Li et al., 2020) 84.2 SpyGR* (Li et al., 2020) 52.8
SANet* (Zhong et al., 2020) 83.2 SANet* (Zhong et al., 2020) 53.0
OCR* (Yuan et al., 2020) 84.3 OCR* (Yuan et al., 2020) 54.8

HamNet 85.9 HamNet 55.2
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