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Complexity of sampling

Given query access to a smooth function V : Rd → R,
what is the minimum number of queries required to output

an approximate sample from the probability density
π ∝ exp(−V ) on Rd . [1]

▶ no interest in normalizing constant Z :=
∫

exp(−V )
▶ it is difficult to compute and not necessary
▶ assume that V is strongly convex
▶ access to the gradient ∇V

[1] S. Chewi, Log-concave sampling 2022.
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Applications

▶ Bayesian statistics
pθ|X (θ|X ) ∝ pX |θ(X |θ)pθ(θ)

▶ high dimensional integration (via Monte Carlo)

▶ statistical physics: Boltzmann (Gibbs) distribution is
proportional to exp(−V /T ).
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HOW?

Langevin diffusion

dZt = −∇V (Zt)dt︸ ︷︷ ︸
gradient flow

+
√

2dBt︸ ︷︷ ︸
Brownian motion

“gradient flow + noise”

Pure gradient flow
dZt = −∇V (Zt)dt

would just converge to a minimum of V .
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Discretizing the Langevin diffusion

Euler-Maruyama

Xk+1 = Xk − h∇V (Xk) + 2(Bk+1 − Bk)

Called Langevin Monte Carlo (LMC),
or unadjusted Langevin algorithm (ULA)

Complexity
Let XN ∼ µN . To achieve

d(µN , π) ≤ ϵ

requires N = O(κd/ϵ2).
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Low-accuracy vs high-accuracy

low-accuracy
▶ discretizations of versions of Langevin diffusion
▶ are biased → step size needs to scale with ϵ

▶ best complexities O(d1/3ϵ−2/3)

high-accuracy
▶ dependence on ϵ is only O(log(1/ϵ)) [2]
▶ requires rejecting some points (based on filters)

[2] Y. T. Lee et al., “Logsmooth gradient concentration and tighter run-
times for metropolized hamiltonian monte carlo” 2020.
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Metropolis–Hastings algorithm

1. Propose a new point Yk ∼ Q(Xk−1, ·)
2. With probability A(Xk−1, Yk), set Xk := Yk ;

otherwise, Xk := Xk−1.

A is the acceptance probability.

Metropolis–Hastings filter:

A(x , y) := 1 ∧ π(y)Q(y , x)
π(x)Q(x , y)
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High-Accuracy Samplers
▶ Metropolized random walk (MRW). Take

Q(x , ·) = N (x , hId).
A random walk around the state space

▶ Metropolis-adjusted Langevin algorithm (MALA).
A more efficient choice

Q(x , ·) = N (x − h∇V (x), 2hId).

▶ others...

MALA - the gold standard
Complexity

O(κd polylog(1/ϵ))
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recap high vs. low-accuracy

O(d1/3ϵ−2/3) vs. O(d log ϵ−1)

What’s up with the dependence on d??
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Dimension dependence of MALA

▶ Complexity of MALA can be improved to O(d1/2) after a
warmstart [3] (because of larger steps).
▶ But(!), no way to find a starting point in O(d1/2).

▶ Later, a O(d) lower bound was established [4].
▶ This year, [5]: underdamped Langevin Monte Carlo

(LMC+momentum) is the answer.

[3] S. Chewi et al., “Optimal dimension dependence of the metropolis-
adjusted langevin algorithm” 2021.
[4] Y. T. Lee et al., “Lower bounds on Metropolized sampling methods for
well-conditioned distributions” 2021.
[5] J. M. Altschuler et al., “Faster High-Accuracy Log-Concave Sampling
Via Algorithmic Warm Starts” 2023.
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Thank You!
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