Complexity of sampling

Axel Böhm

July 26, 2023

Complexity of sampling

Given query access to a smooth function $V : \mathbb{R}^d \to \mathbb{R}$, what is the minimum **number of queries** required to output an **approximate sample** from the probability density $\pi \propto \exp(-V)$ on \mathbb{R}^d . [1]

Complexity of sampling

Given query access to a smooth function $V : \mathbb{R}^d \to \mathbb{R}$, what is the minimum **number of queries** required to output an **approximate sample** from the probability density $\pi \propto \exp(-V)$ on \mathbb{R}^d . [1]

- no interest in normalizing constant $Z := \int \exp(-V)$
- it is difficult to compute and not necessary
- assume that V is strongly convex
- access to the gradient ∇V

[1] S. Chewi, Log-concave sampling 2022.

Applications

Bayesian statistics

 $p_{ heta|X}(heta|X) \propto p_{X| heta}(X| heta) p_{ heta}(heta)$

- high dimensional integration (via Monte Carlo)
- ▶ statistical physics: Boltzmann (Gibbs) distribution is proportional to $\exp(-V/T)$.

HOW?

Langevin diffusion

$$\mathrm{d}Z_t = \underbrace{-\nabla V(Z_t)\mathrm{d}t}_{\text{gradient flow}} + \underbrace{\sqrt{2}\mathrm{d}B_t}_{\text{Brownian motion}}$$

"gradient flow + noise"

HOW?

Langevin diffusion

$$\mathrm{d}Z_t = \underbrace{-\nabla V(Z_t)\mathrm{d}t}_{\text{gradient flow}} + \underbrace{\sqrt{2}\mathrm{d}B_t}_{\text{Brownian motion}}$$

"gradient flow + noise"

Pure gradient flow

$$\mathrm{d}Z_t = -\nabla V(Z_t)\mathrm{d}t$$

would just converge to a minimum of V.

Discretizing the Langevin diffusion

Euler-Maruyama

$$X_{k+1} = X_k - h \nabla V(X_k) + 2(B_{k+1} - B_k)$$

Called Langevin Monte Carlo (LMC), or unadjusted Langevin algorithm (ULA)

Discretizing the Langevin diffusion

Euler-Maruyama

$$X_{k+1} = X_k - h \nabla V(X_k) + 2(B_{k+1} - B_k)$$

Called Langevin Monte Carlo (LMC), or unadjusted Langevin algorithm (ULA)

Complexity

Let $X_N \sim \mu_N$. To achieve $d(\mu_N,\pi) \leq \epsilon$ requires $N = O(\kappa d/\epsilon^2).$

Low-accuracy vs high-accuracy

low-accuracy

- discretizations of versions of Langevin diffusion
- \blacktriangleright are **biased** \rightarrow step size needs to scale with ϵ
- best complexities $O(d^{1/3}\epsilon^{-2/3})$

high-accuracy

- dependence on ϵ is only $O(\log(1/\epsilon))$ [2]
- requires rejecting some points (based on *filters*)

[2] Y. T. Lee *et al.*, "Logsmooth gradient concentration and tighter runtimes for metropolized hamiltonian monte carlo" 2020.

Metropolis-Hastings algorithm

- 1. Propose a new point $Y_k \sim Q(X_{k-1}, \cdot)$
- 2. With probability $A(X_{k-1}, Y_k)$, set $X_k := Y_k$; otherwise, $X_k := X_{k-1}$.

A is the acceptance probability.

Metropolis-Hastings filter:

$$egin{aligned} \mathsf{A}(x,y) &:= 1 \wedge rac{\pi(y) \mathcal{Q}(y,x)}{\pi(x) \mathcal{Q}(x,y)} \end{aligned}$$

7/11

High-Accuracy Samplers

• Metropolized random walk (MRW). Take $Q(x, \cdot) = \mathcal{N}(x, hl_d).$

A random walk around the state space

Metropolis-adjusted Langevin algorithm (MALA).
A more efficient choice

$$Q(x, \cdot) = \mathcal{N}(x - h\nabla V(x), 2hI_d).$$

High-Accuracy Samplers

• Metropolized random walk (MRW). Take $Q(x, \cdot) = \mathcal{N}(x, hI_d).$

A random walk around the state space

Metropolis-adjusted Langevin algorithm (MALA).
A more efficient choice

$$Q(x, \cdot) = \mathcal{N}(x - h\nabla V(x), 2hI_d).$$

others...

MALA - the gold standard Complexity $O(\kappa d \operatorname{polylog}(1/\epsilon))$ recap high vs. low-accuracy

$$O(d^{1/3}\epsilon^{-2/3})$$
 vs. $O(d\log\epsilon^{-1})$

What's up with the dependence on d??

Dimension dependence of MALA

 Complexity of MALA can be improved to O(d^{1/2}) after a warmstart [3] (because of larger steps).

• But(!), no way to find a starting point in $O(d^{1/2})$.

Later, a O(d) lower bound was established [4].

This year, [5]: underdamped Langevin Monte Carlo (LMC+momentum) is the answer.

[3] S. Chewi *et al.*, "Optimal dimension dependence of the metropolisadjusted langevin algorithm" 2021.

[4] Y. T. Lee *et al.*, "Lower bounds on Metropolized sampling methods for well-conditioned distributions" 2021.

[5] J. M. Altschuler *et al.*, "Faster High-Accuracy Log-Concave Sampling Via Algorithmic Warm Starts" 2023.

Dimension dependence of MALA

 Complexity of MALA can be improved to O(d^{1/2}) after a warmstart [3] (because of larger steps).

• But(!), no way to find a starting point in $O(d^{1/2})$.

• Later, a O(d) lower bound was established [4].

This year, [5]: underdamped Langevin Monte Carlo (LMC+momentum) is the answer.

^[3] S. Chewi *et al.*, "Optimal dimension dependence of the metropolisadjusted langevin algorithm" 2021.

^[4] Y. T. Lee *et al.*, "Lower bounds on Metropolized sampling methods for well-conditioned distributions" 2021.

^[5] J. M. Altschuler *et al.*, "Faster High-Accuracy Log-Concave Sampling Via Algorithmic Warm Starts" 2023.

Dimension dependence of MALA

 Complexity of MALA can be improved to O(d^{1/2}) after a warmstart [3] (because of larger steps).

• **But(!)**, no way to find a starting point in $O(d^{1/2})$.

• Later, a O(d) lower bound was established [4].

This year, [5]: underdamped Langevin Monte Carlo (LMC+momentum) is the answer.

^[3] S. Chewi *et al.*, "Optimal dimension dependence of the metropolisadjusted langevin algorithm" 2021.

^[4] Y. T. Lee *et al.*, "Lower bounds on Metropolized sampling methods for well-conditioned distributions" 2021.

^[5] J. M. Altschuler *et al.*, "Faster High-Accuracy Log-Concave Sampling Via Algorithmic Warm Starts" 2023.

Thank You!