
Self-Attention Between Datapoints: 
Going Beyond individual Input-Output Pairs 

in Deep Learning

Jannik Kossen, Neil Band, Clare Lyle, Aidan Gomez, Tom Rainforth, Yarin Gal ~ 2021 (NeurIPS)

presented by Ruard van Workum at DL seminar/MDS

https://openreview.net/profile?id=~Jannik_Kossen2
https://openreview.net/profile?id=~Neil_Band1
https://openreview.net/profile?id=~Clare_Lyle1
https://openreview.net/profile?id=~Aidan_Gomez1
https://openreview.net/profile?id=~Tom_Rainforth1
https://openreview.net/profile?id=~Yarin_Gal1


Parametric vs. non-parametric modelling

● Fixed number of parameters, e.g. 
linear regression

● With non-optimal capacity we can 
never reach the lowest possible 
error (Bayes error)

● Utilize assumptions about data 
distribution to reduce number of 
parameters

● Can’t utilize direct relationships 
between datapoints

Parametric Non-Parametric

● Number of parameters scales with 
training data, e.g. nearest 
neighbor regression

● With increasing training set size, 
we eventually reach Bayes error

● Minimize assumptions about data 
distribution with the cost of 
computational complexity

● Can utilize direct relationships 
between datapoints



Hybrid forms - example with KNN regression
K-NN (non-parametric): compute label as an average of the 
labels of the K-nearest neighbouring datapoints, according to a 
euclidean distance metric in feature space.

K-NN (hybrid form):

1) Compute averages over K-nearest neighbours in an 
embedding space, where the linear mapping from features 
to embedding is parametrized by a neural net.

2) Compute averages over K-nearest neighbours in feature 
space, according to a distance metric which is parametrized 
by a neural network.



This work: Non-Parametric Transformers (NPT’s)
Challenges the strictly parametric modelling practices in modern deep learning, by extending 
models with the additional flexibility to use training data to make predictions during test time.

The NPT model models both:
1) interactions between features or representation learning (think of this as learning an 
embedding of the training data -> K-NN example)
2) interactions between data points (think of this as learning custom distance functions -> 
K-NN example)

By utilizing end-to-end training, the model can naturally learn from the data how to balance 
these two.



This work: Non-Parametric Transformers
“Non-Parametric Transformers explicitly learn relationships between data points to improve 
predictions.” 3 most important ingredients for to achieve this:

1) The model is provided with the entire dataset as input. If the dataset size exceeds 
computational constraints, this is approximated with minibatches.

2) They use self-attention between features and between data-points.
3) The NPT’s training objective is to reconstruct a corrupted version of the input 

dataset, in which some fields are masked (similar to NLP). This means that random 
features and/or targets are masked & loss is minimized on the predictions at these 
masked entries.



Architecture

There is also a binary Mask matrix M with size n by d, indicating masked values.

Therefore NPT takes as input (X, M) and outputs a matrix X* for values masked at input.



Architecture

The input matrix X is first linearly embedded into a matrix of size n x d x e. 

Then Multi-Head Self-Attention layers between data points & attributes/features are 
applied repeatedly.

Note: NPT’s are equivariant with respect to permutations in datapoints (along 
vertical axis in the image)



Architecture: Multi-Head Self-Attention
Attention: a weighted sum with data-dependent learned weights 

For example:
- We can compute a hidden state of a word in a sentence as a weighted sum of 

other words in the same sentence (where the weights depend on the other words)
- We can compute a hidden state of a node in a graph as a weighted sum of 

neighbouring nodes/edges in the graph (where the weights depend on the other 
nodes/edges)

That leaves the question: How do we compute the data-dependent weights? (also 
called alignment weights)

Since our datapoints are represented as vectors, we can utilize all standard vector 
similarity measures:

- Cosine-similarity
- Dot-product
- Scaled dot-product (used in the original Transformers paper)



Architecture: Multi-Head Self-Attention
In the case of self-attention, we allow the model to learn different mappings from the 
initial representation to:
(1) Query vectors (Q) & Key vectors (K) (the vectors we use to calculate alignment 
scores)
(2) Value vectors (V) (the vectors we use to take this weighted sum over)

Which allows you to update all representations using just Matrix multiplication:

Where Q, K & V are now matrices obtained by stacking the Q, K & V vectors of all 
datapoints



Architecture: Multi-Head Self-Attention

Self-Attention in this case refers to the fact that Q = K = V = H_i, where H_i represents the 
hidden representation at layer i.

Multi-Head attention allows for easy parallelization.



Architecture



Results on standard supervised-learning tasks

Tabular data: Average 
rank-order on UCI benchmarks 
for binary class. , multi-class 
class. & regression tasks

Image data: 93.7% on CIFAR-10 (using CNN 
embedding) & 98.3% on MNIST.



NPT’s learn to predict using attention between datapoints

They perform experiments where each mini-batch consists of the original data + duplicate 
original data with targets masked (this way they hope that the model is forced to perform 
datapoint lookup).

(They call this a semi-synthetic task, I believe it’s just synthetic)



NPT’s learn to predict using attention between datapoints 
(on real data)

Another experiment: At test time, randomize the data for all other datapoints by independently 
shuffling each of their attributes across the rows. Since this corrupts the information from all 
datapoints except the one that is tested, this should deteriorate performance if the model 
correctly learned relationships between data.



NPT’s learn to rely on similar datapoints for predictions on 
real data

Qualitative: Looking at the ABD attention 
weight maps on datapoints sorted by 
feature space distance -> “diagonal 
structure”

Quantitative: Removing data points from 
dataset until performance starts to 
deteriorate very fast -> “kept” datapoints 
are closer then “removed” datapoints (in 
feature space)



Final statement

NPT’s seem to a successful attempt at combining parametric & non-parametric ML 
approach into 1 model using state-of-the-art attention mechanism and a very 
flexible training strategy. 

Another setting I think would be interesting is if we have very few labelled 
datapoints & high amount of unlabelled datapoints.


