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In today’s heavily overparameterized models, the value of the training loss pro-
vides few guarantees on model generalization ability. Indeed, optimizing only
the training loss value, as is commonly done, can easily lead to suboptimal
model quality. Motivated by prior work connecting the geometry of the loss
landscape and generalization, we introduce a novel, effective procedure for in-
stead simultaneously minimizing loss value and loss sharpness. In particular,
our procedure, Sharpness-Aware Minimization (SAM), seeks parameters that lie
in neighborhoods having uniformly low loss; this formulation results in a min-
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Extensive empirical evaluation
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The motivation

Theorem (stated informally) 1. For any p > 0, with high probability over training set S generated
from distribution 9,

Lg(w) < max Ls(w + €) + h([|w||3/p?),

.PAC-Bayes (Probably Approximately Correct ‘84)

Minimize ther.h.s. instead:

min LM (w) + N||w||?  where  L3*M(w )éllnllla}é Ls(w + €),
w Ellp=p
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In implementation: mSAM

Though our derivation of SAM defines the SAM objective over the entire training set, when utilizing
SAM in practice, we compute the SAM update per-batch (as described in Algorithm 1) or even by
averaging SAM updates computed independently per-accelerator (where each accelerator receives a
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How Does Sharpness-Aware Minimization

Better understanding Minimize Sharpness?
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theoretical characterizations. SAM intends to penalize a notion of sharpness of the model but
implements a computationally efficient variant; moreover, a third notion of sharpness was used
for proving generalization guarantees. The subtle differences in these notions of sharpness can

Type of Sharpness-Aware Loss

Notation Definition Biases (among minimizers)

Worst-direction
Ascent-direction

Average-direction

Lg"ax max| |, <1 L(z + pv)  min, M (V2L(z)) (Thm E.3)
LA L (:1: + p%) ming Amin(V2L(z)) (Thm E.4)
Ly E,ononL(z+ pre)  ming Tr(V2L(2)) (Thm E.5)
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Weight perturbations

Perturbation radius used for training
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The existing generalization bound does not explain the
success of SAM. The main theoretical justification for SAM
comes from the PAC-Bayesian generalization bound pre-
sented, e.g., in Theorem 2 of Foret et al. (2021). How-
ever, the bound is derived for random perturbations of
the parameters, i.e. the leading term of the bound is
Esn(0,0) D iy Li(w + 6). The extension to worst-case
perturbations, i.e. max s, <, Son  li(w+9), is done post
hoc and only makes the bound less tight. Moreover, we can
see empirically (Fig. 1) that both training methods suggested
by the derivation of this bound (random perturbations and
n-SAM) do not substantially improve generalization. This
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Related literature: A concurrent work
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larization techniques (e.g., [10, 22, 23, 44]). A concurrent
work of [9] further provides a PAC-Bayesian justification as
to why the flatness of the minima helps generalization.

Lavp(0) = A Lrrm(0 + A)
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The prequel

Adversarial Weight Perturbation Helps
Robust Generalization
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.Predates all other papers
Abstract

The study on improving the robustness of deep neural networks against adver-
sarial examples grows rapidly in recent years. Among them, adversarial training
is the most promising one, which flattens the inpuf loss landscape (loss change
with respect to input) via training on adversarially perturbed examples. However,
how the widely used weight loss landscape (loss change with respect to weight)
performs in adversarial training is rarely explored. In this paper, we investigate
the weight loss landscape from a new perspective, and identify a clear correlation
between the flatness of weight loss landscape and robust generalization gap. Sev-
eral well-recognized adversarial training improvements, such as early stopping,
designing new objective functions, or leveraging unlabeled data, all implicitly
flatten the weight loss landscape. Based on these observations, we propose a simple
yet effective to explicitly regularize the

flatness of weight loss landscape, forming a double-perturbation mechanism in the




Generalization

Sharpness and Generalization. The study on the connection between sharpness and general-
1zation can be traced back to Hochreiter & Schmidhuber (1997). Keskar et al. (2016) observe a
positve correlation between the batch size, the generalization error, and the sharpress of the o
landscape when changing the batch size. Jastrzebski et al. (2017) extend this by finding a correlation
between the sharpness and the ratio between learning rate to batch size. Dinh et al. (2017) show
that one can easily construct networks with good generalization but with arbitrary large sharpness
by reparametrization. Dziugaite & Roy (2017); Neyshabur et al. (2017); Wei & Ma (2019a,b) give
theoretical guarantees on the generalization error using sharpness-related measures. Jiang et al.
(2019) perform a large-scale empirical study on various generalization measures and show that
sharpness-based measures have the highest correlation with generalization.
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Improve generalization via flatness

.Easy to implement, only 1.5x slower
.Many approximations / engineering
.Little understanding

.Useful in (semi)-supervised [/ adversarial learning, noisy labels, ...
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Averaging Weights Leads to Wider Optima and Better Generalization
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